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1 Closed Operators

Suppose that A and B are Banach spaces.

Definition 1.1
A linear mapping of a dense subspace of A into B is called a densely defined
operator of A into B.

Definition 1.2
A densely defined operator is called a closed operator if the graph is closed.

Remark 1.1
The sum of a closed operator and a bounded operator is closed.

Example 1.1
Suppose that µ is a measure.

1. Suppose that x is a measurable function.

{ ξ ∈ L2(µ) : xξ ∈ L2(µ) } → L2(µ), ξ 7→ xξ

is a normal operator on L2(µ) and the adjoint is

{ ξ ∈ L2(µ) : xξ ∈ L2(µ) } → L2(µ), ξ 7→ xξ.
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2. M(µ)/{x : x = 0 locally a.e. } is a subset of the set of closed operators on
L2(µ).

Theorem 1.1 (Closed Graph Theorem)
A closed operator such that the domain is complete is bounded.

Definition 1.3
A densely defined operator extended by a closed operator is called a closable
operator.

Remark 1.2
The sum of a closable operator and a bounded operator is closable.

Definition 1.4
Suppose that x is a closable operator. The unique closed operator x extending
x such that

domx = min{ domx′ : x′ is a closed operator extending x }

is called the closure of x.

Remark 1.3
The closure of the sum of a closable operator and a bounded operator is the
sum of the closure of the closable operator and the bounded operator.

Proposition 1.1
A densely defined operator is closable if and only if

{ η : 0⊕ η is an element of the closure of the graph } = {0}.

In this case the graph of the closure is the closure of the graph.

2 Spectrum

Suppose that x is a closed operator on a complex Banach space A.

Definition 2.1
The open set

ρ(x) = { z ∈ C : dim ker(x− z) = 0 and ran(x− z) = A }

is called the resolvent set of x.

Remark 2.1 1. Suppose that z is an element of ρ(x). If dimA > 0 then
B(z, ‖(x− z)−1‖−1) is a subset of ρ(x).

2. z 7→ (x− z)−1 is holomorphic on ρ(x) and

dn

dzn
(x− z)−1 = n!((x− z)−1)n+1

for ∀n = 0, 1, . . . and for ∀z of ρ(x).
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3. Suppose that z1 and z2 are elements of ρ(x).

(x− z1)−1 − (x− z2)−1 = (z1 − z2)(x− z1)−1(x− z2)−1

= (z1 − z2)(x− z2)−1(x− z1)−1.

Example 2.1
Suppose that x is a continuous function on Rn (Example 1.1).

1. σ(x) = x(Rn).

2. dim ker(x− z) = 0 if and only if mn(x−1({z})) = 0 for ∀z of C.

3 Closable Operators on Hilbert Spaces

Suppose that H, H ′, H1, H2, H3 are Hilbert spaces.

Remark 3.1
Suppose that x is a linear mapping of a subspace of H into H.

(xξ, η) =
1

4

3∑
k=0

ik(x(ξ + ikη), ξ + ikη)

for ∀ξ and ∀η of domx.

Definition 3.1
Suppose that x is a closable operator of H into H ′. The unique closed operator
x∗ of H ′ into H such that

domx∗ = { η ∈ H ′ : ξ 7→ (xξ, η) is bounded on domx }

and (xξ, η) = (ξ, x∗η) for ∀ξ of domx and for ∀η of domx∗ is called the adjoint
of x.

Remark 3.2 1. kerx∗ = (ranx)⊥.

2. The second adjoint of a closable operator is the closure.

3. The adjoint of the sum of a closable operator and a bounded operator is
the sum of the adjoints.

4. If x is bounded then x∗ is bounded and ‖x∗‖ = ‖x‖.

Definition 3.2
Suppose that x is a conjugate linear closable operator of H into H ′. The unique
conjugate linear closed operator x∗ of H ′ into H such that

domx∗ = { η ∈ H ′ : ξ 7→ (η, xξ) is bounded on domx }

and (η, xξ) = (ξ, x∗η) for ∀ξ of domx and for ∀η of domx∗ is called the adjoint
of x.

3



Remark 3.3 1. kerx∗ = (ranx)⊥.

2. The second adjoint of a conjugate linear closable operator is the closure.

3. The adjoint of the sum of a conjugate linear closable operator and a con-
jugate linear bounded operator is the sum of the adjoints.

4. If x is bounded then x∗ is bounded and ‖x∗‖ = ‖x‖.

Proposition 3.1
A densely defined operator x of H into H ′ is closable if

{ η ∈ H ′ : ξ 7→ (xξ, η) is bounded on domx }

is a dense subspace of H ′.

Proposition 3.2
A densely defined conjugate linear operator x of H into H ′ is closable if

{ η ∈ H ′ : ξ 7→ (η, xξ) is bounded on domx }

is a dense subspace of H ′.

Proposition 3.3
Suppose that x is a closed operator of H into H ′. If x and x∗ are injective then
x−1 is a closed operator of H ′ into H such that (x−1)∗ = (x∗)−1.

Proposition 3.4
Suppose that x1 (resp. x2) is a closed operator of H1 (resp. H2) into H2 (resp.
H3) such that x2x1 and x∗1x

∗
2 are densely defined.

1. x2x1 is closable and (x2x1)∗ is an extension of x∗1x
∗
2.

2. If x2 is bounded then (x2x1)∗ = x∗1x
∗
2.

Proposition 3.5
Suppose that x is a closed operator of H into H ′. The following are equivalent.

1. x is a partial isometry.

2. x∗x is a projection.

3. x∗ is a partial isometry.

4. xx∗ is a projection.

In this case x∗x is a projection onto (kerx)⊥ and xx∗ is a projection onto ranx.

Proposition 3.6
Suppose that x is a conjugate linear closed operator of H into H ′. The following
are equivalent.

1. x is a conjugate linear partial isometry.
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2. x∗x is a projection.

3. x∗ is a conjugate linear partial isometry.

4. xx∗ is a projection.

In this case x∗x is a projection onto (kerx)⊥ and xx∗ is a projection onto ranx.

Proposition 3.7
Suppose that x is a closed operator of H into H ′.

H ⊕H ′ = { ξ ⊕ (−xξ) : ξ ∈ domx } ⊕ { (x∗η)⊕ η : η ∈ domx∗ }

and

‖(xx∗ + 1)−1x‖ ≤ 1, (xx∗ + 1)−1x = x(x∗x+ 1)−1.

Definition 3.3
A dense subspace of the domain of a closed operator is called a core for the
operator if the operator is the closure of the restriction of the operator to the
subspace.

Theorem 3.1 (Polar Decomposition)
Suppose that x is a closed operator of H into H ′.

1. There exists a unique partial isometry p(x) ofH intoH ′ such that ker p(x) =
ker(x∗x)1/2 and x = p(x)(x∗x)1/2 = (xx∗)1/2p(x).

2. p(x)f(x∗x) = f(xx∗)p(x) for a measurable function ∀f on (0,∞).

3. p(x∗) = p(x)∗.

Remark 3.4 1. If ker p = ker r then x = pr is a closed operator of H into H ′

such that p(x) = p and (x∗x)1/2 = r for a partial isometry ∀p of H into
H ′ and for a non-negative self-adjoint operator ∀r on H.

2. If ker p∗ = ker r then x = rp is a closed operator of H into H ′ such that
p(x) = p and (xx∗)1/2 = r for a partial isometry ∀p of H into H ′ and for
a non-negative self-adjoint operator ∀r on H ′.

Theorem 3.2 (Polar Decomposition)
Suppose that x is a conjugate linear closed operator of H into H ′.

1. There exists a unique conjugate linear partial isometry p(x) of H into H ′

such that ker p(x) = ker(x∗x)1/2 and x = p(x)(x∗x)1/2 = (xx∗)1/2p(x).

2. p(x)f(x∗x) = f(xx∗)∗p(x) for a measurable function ∀f on (0,∞).

3. p(x∗) = p(x)∗.

Remark 3.5 1. If ker p = ker r then x = pr is a conjugate linear closed oper-
ator of H into H ′ such that p(x) = p and (x∗x)1/2 = r for a conjugate
linear partial isometry ∀p of H into H ′ and for a non-negative self-adjoint
operator ∀r on H.
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2. If ker p∗ = ker r then x = rp is a conjugate linear closed operator of H
into H ′ such that p(x) = p and (xx∗)1/2 = r for a conjugate linear partial
isometry ∀p of H into H ′ and for a non-negative self-adjoint operator ∀r
on H ′.

Definition 3.4
A densely defined operator is called a symmetric operator if the numerical range
is real.

Remark 3.6 1. Suppose that x is a symmetric operator.

‖(x− z)ξ‖ ≥ |Im z|‖ξ‖

for ∀z of C and for ∀ξ of domx.

2. Suppose that x is a closed symmetric operator.

|Im z|‖(x− z)−1‖ ≤ 1

for ∀z of ρ(x).

3. ran(x−z) is closed for a closed symmetric operator ∀x and for ∀z of C\R.

4. The spectrum of a self-adjoint operator is real.

5. A symmetric operator is closable and extended by the adjoint.

6. The closure of a symmetric operator is a symmetric operator.

Proposition 3.8
Suppose that x is a symmetric operator on H. The following are equivalent.

1. x is self-adjoint.

2. x is closed and dim ker(x− i)∗ = dim ker(x+ i)∗ = 0.

3. ran(x− i) = ran(x+ i) = H.

Theorem 3.3 (Stone’s Theorem)
The set of strongly continuous (resp. norm continuous) one parameter unitary
groups is the set of self-adjoint (resp. bounded self-adjoint) operators.

Remark 3.7
Suppose that x is a self-adjoint operator.

lim
k→0

eikx − 1

ik
ξ =

[
1

i

d

dk
(eikxξ)

]
k=0

exists if and only if ξ is an element of domx for ∀ξ.

1

i

d

dk
(eikxξ) = xeikxξ

for ∀ξ of domx.
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Definition 3.5
A symmetric operator is said to be essentially self-adjoint if the closure is self-
adjoint.

Proposition 3.9
Suppose that x is a symmetric operator on H. The following are equivalent.

1. x is essentially self-adjoint.

2. dim ker(x− i)∗ = dim ker(x+ i)∗ = 0.

3. ran (x− i) = ran (x+ i) = H.

Definition 3.6
A symmetric operator is said to be non-negative if the numerical range is non-
negative.

Remark 3.8 1. Suppose that x is a non-negative symmetric operator.

‖(x+ x0)ξ‖ ≥ x0‖ξ‖

for ∀x0 ≥ 0 and for ∀ξ of domx.

2. ran(x+x0) is closed for a closed non-negative symmetric operator ∀x and
for ∀x0 > 0.

3. The spectrum of a non-negative self-adjoint operator is non-negative.

Proposition 3.10
If x is a closed operator of H into H ′ then x∗x is a non-negative self-adjoint
operator on H and domx∗x is a core for x.

Remark 3.9 1. Suppose that x is a closed operator of H into H ′.

domx ∩ (kerx)⊥ → ranx, ξ 7→ xξ

is a closed operator of (kerx)⊥ into ranx.

2. Suppose that x is a (resp. non-negative) self-adjoint operator.

domx ∩ (kerx)⊥ → (kerx)⊥, ξ 7→ xξ

is a (resp. non-negative) self-adjoint operator on (kerx)⊥.

Remark 3.10
Suppose that H =

⊕
iHi and H ′ =

⊕
iH
′
i are direct sum Hilbert spaces.

1. If (xi)i is a family such that xi is a closed operator of Hi into H ′i for ∀i
then

x =
⊕
i

xi :

{
ξ ∈

∏
i

domxi :
∑
i

‖ξi‖2,
∑
i

‖xiξi‖2 <∞
}
→ H ′,

ξ 7→
⊕
i

xiξi

is a closed operator ofH intoH ′ such that x∗ =
⊕

i x
∗
i and x∗x =

⊕
i x
∗
i xi.
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2. If (xi)i is a family such that xi is a normal operator on Hi for ∀i then
x =

⊕
i xi is a normal operator on H.

3. If (xi)i is a family such that xi is a (resp. non-negative) self-adjoint
operator on Hi for ∀i then x =

⊕
i xi is a (resp. non-negative) self-adjoint

operator on H.

4 Spectral Measures

Suppose that X is a set.

Definition 4.1
A mapping P of a σ-algebra over X into the set of projections of a von Neumann
algebra is called a spectral measure if P is countably additive with respect to
the ultratopologies and P (X) = 1.

Remark 4.1
Suppose that P is a spectral measure.

1. P (S1 ∩ S2) = P (S1)P (S2) for ∀S1 and ∀S2.

2. S 7→ ϕ(P (S)) is a probability measure for a normal state ∀ϕ.

Proposition 4.1
A mapping P of a σ-algebra into the set of projections of a von Neumann
algebra such that S 7→ (P (S)ξ, ξ) is a probability measure for a unit vector ∀ξ
is a spectral measure.

Definition 4.2
Suppose that P is a spectral measure. We denote the ∗-algebra of equivalence
classes of elements of the ∗-algebra of measurable functions by M(P ).

Definition 4.3
A closed operator is said to be affiliated with a von Neumann algabra if it
commutes with any unitary element of the commutant.

Proposition 4.2
A normal operator is affiliated with a von Neumann algebra if and only if the
resolution of the identity is affiliated with the von Neumann algabra.

Theorem 4.1
Suppose that x′ is a closed operator on H and that S is a self-adjoint subset of
B(H). The following are equivalent.

1. x′ is affiliated with S′.

2. xξ is an element of domx′ and x′xξ = xx′ξ for ∀x of S and for ∀ξ of
domx′.
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Proposition 4.3
Suppose that P is a spectral measure affiliated with a von Neumann algebra N .

L∞(P ) =

{
f ∈M(P ) : ‖f‖∞ = min{m : |f | ≤ m }

= min
P (N)=0

sup
x∈X\N

|f(x)| <∞
}

is a C∗-subalgebra of N .

Remark 4.2
Suppose that N∗ is separable.

1. There exists a finite measure mutually absolutely continuous with respect
to P . We denote the Banach space of complex measures absolutely con-
tinuous with respect to P by L1(P ).

L∞(P ) = L1(P )∗.

2. L∞(P ) is a von Neumann subalgebra of N and L∞(P )∗ = L1(P ).

Theorem 4.2
Suppose that P is a spectral measure.

1. Suppose that f is a measurable function. There exists a unique closed
operator ∫

f(x)P (dx) =

∫
xP (f−1(dx))

such that

dom

∫
f(x)P (dx) =

{
ξ :

∫
|f(x)|2Pξ(dx) <∞

}
and

(

∫
f(x)P (dx)ξ, η) =

∫
f(x)Pξ,η(dx)

for ∀ξ of dom
∫
f(x)P (dx) and for ∀η.

(

∫
f(x)P (dx))∗ =

∫
f(x)P (dx)

and ∫
f(x)P (dx)

∫
f(x)P (dx) =

∫
|f(x)|2P (dx).

If f is invertible then ∫
f(x)P (dx)

is injective and

(

∫
f(x)P (dx))−1 =

∫
f(x)−1P (dx).
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2. Suppose that f is a real measurable function.∫
f(x)P (dx)

is self-adjoint. If f is non-negative then∫
f(x)P (dx)

is non-negative and

(

∫
f(x)P (dx))1/2 =

∫
f(x)1/2P (dx).

3. Suppose that f is a measurable function.∫
f(x)P (dx)P (S)

is an extension of

P (S)

∫
f(x)P (dx)

for ∀S.

4. Suppose that f and g are measurable functions.∫
|f(x)g(x)||Pξ,η|(dx) ≤ (

∫
|f(x)|2Pξ(dx))1/2(

∫
|g(x)|2Pη(dx))1/2

for ∀ξ and ∀η.

(

∫
f(x)P (dx)ξ,

∫
g(x)P (dx)η) =

∫
f(x)g(x)Pξ,η(dx)

for ∀ξ of dom
∫
f(x)P (dx) and for ∀η of dom

∫
g(x)P (dx).

5. Suppose that f and g are measurable functions.

dom

(∫
f(x)P (dx) +

∫
g(x)P (dx)

)
= dom

∫
f(x)P (dx) ∩ dom

∫
(f + g)(x)P (dx)

= dom

∫
g(x)P (dx) ∩ dom

∫
(f + g)(x)P (dx)

and ∫
(f + g)(x)P (dx)

is an extension of ∫
f(x)P (dx) +

∫
g(x)P (dx).
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6. Suppose that f and g are measurable functions.

dom

∫
g(x)P (dx)

∫
f(x)P (dx)

= dom

∫
f(x)P (dx) ∩ dom

∫
f(x)g(x)P (dx)

and ∫
f(x)g(x)P (dx)

is an extension of ∫
g(x)P (dx)

∫
f(x)P (dx).

7. Suppose that f is a measurable function.

‖
∫
f(x)P (dx)‖ = ‖f‖∞.

Definition 4.4
A closed operator is called a normal operator if it commutes with the adjoint.

Theorem 4.3 (Spectral Theorem)
There exists a unique spectral measure Px on the complex plane such that

x =

∫
x′Px(dx′)

for a normal operator ∀x.

Remark 4.3
The support of the resolution of the identity is the spectrum.

Proposition 4.4

‖x‖ = sup
x′∈σ(x)

|x′|

for a normal operator ∀x.

Theorem 4.4 (Spectral Mapping Theorem)
Suppose that x is a normal operator.

σ(f(x)) = f(σ(x))

for a continuous function ∀f on σ(x).

Proposition 4.5
x1/2 is the unique non-negative self-adjoint operator such that x1/2x1/2 = x for
a non-negative self-adjoint operator ∀x.

11



Theorem 4.5

1

x− z
= i

∫ ∞
0

e−ik(x−z) dk

for a self-adjoint operator ∀x and for ∀z of the upper half-plane.

Proposition 4.6

ker(x− x0) = ranPx({x0})

for a self-adjoint operator ∀x and for a real number ∀x0.

Proposition 4.7
Suppose that (Pi)i is a family of spectral measures on a measurable space.

S 7→ (
⊕
i

Pi)(S) =
⊕
i

Pi(S)

is a spectral measure and∫
f(x)(

⊕
i

Pi)(dx) =
⊕
i

∫
f(x)Pi(dx)

for a measurable function ∀f .

Proposition 4.8
If x =

⊕
i xi is a direct sum normal operator then Px =

⊕
i Pxi

and f(x) =⊕
i f(xi) for a measurable function ∀f on a Borel set such that Px(dom f) = 1.

Remark 4.4
If x =

⊕
i xi is a direct sum normal operator then σ(x) =

⋃
i σ(xi).

Proposition 4.9 1. Suppose that P is a spectral measure and that f is a mea-
surable function on a measurable set such that P (dom f) = 1. If g is a
measurable function on a Borel set such that P (f−1(dom g)) = 1 then

g

(∫
dom f

f(x)P (dx)

)
=

∫
f−1(dom g)

(g ◦ f)(x)P (dx).

2. Suppose that x is a normal operator and that f is a measurable function
on a Borel set such that Px(dom f) = 1. If g is a measurable function on
a Borel set such that Pf(x)(dom g) = Px(f−1(dom g)) = 1 then g(f(x)) =
(g ◦ f)(x).

Remark 4.5
Suppose that J is a conjugate linear orthogonal operator of H onto H ′.

1. If x is a closable operator on H then (JxJ∗)∗ = Jx∗J∗.
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2. If P is a spectral measure relative to H then

S 7→ JP (S)J∗

is a spectral measure relative to H ′ and

J(

∫
f(x)P (dx))J∗ =

∫
f(x)JP (dx)J∗

for a measurable function ∀f .

3. If x is a self-adjoint operator on H then JxJ∗ is a self-adjoint operator on
H ′ and

PJxJ∗(S) = JPx(S)J∗

for a Borel set ∀S.

5 Generalized Spectral Measures

Definition 5.1
A mapping Π of a σ-algebra over X into the set of positive elements of a von
Neumann algebra is called a generalized spectral measure if Π is countably
additive with respect to the ultratopologies and Π(X) = 1.

Proposition 5.1
A mapping Π of a σ-algebra into the set of positive elements of a von Neumann
algebra such that S 7→ (Π(S)ξ, ξ) is a probability measure for a unit vector ∀ξ
is a generalized spectral measure.
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