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1 Closed Operators

Suppose that A and B are Banach spaces.

DEFINITION 1.1

A linear mapping of a dense subspace of A into B is called a densely defined
operator of A into B.

DEFINITION 1.2
A densely defined operator is called a closed operator if the graph is closed.

REMARK 1.1
The sum of a closed operator and a bounded operator is closed.

ExamPLE 1.1
Suppose that p is a measure.

1. Suppose that = is a measurable function.

{€€ L?(n) - a€ € L?(n) } — L*(n), £ ag

is a normal operator on L?(x) and the adjoint is

{¢elP(p): T e LP(n)} — L*(n), £ T,



2. M(u)/{x:z=0locally a.e. } is a subset of the set of closed operators on
L*().

THEOREM 1.1 (Closed Graph Theorem)
A closed operator such that the domain is complete is bounded.

DEFINITION 1.3
A densely defined operator extended by a closed operator is called a closable
operator.

REMARK 1.2
The sum of a closable operator and a bounded operator is closable.

DEFINITION 1.4
Suppose that z is a closable operator. The unique closed operator T extending
2 such that

domZ = min{domz’ : 2’ is a closed operator extending z }
is called the closure of x.

REMARK 1.3
The closure of the sum of a closable operator and a bounded operator is the
sum of the closure of the closable operator and the bounded operator.

ProrosITION 1.1
A densely defined operator is closable if and only if

{n:0&®n is an element of the closure of the graph } = {0}.

In this case the graph of the closure is the closure of the graph.

2 Spectrum

Suppose that z is a closed operator on a complex Banach space A.

DEFINITION 2.1
The open set

p(z) ={z € C:dimker(z — z) =0 and ran(x — 2) = A }
is called the resolvent set of x.

REMARK 2.1 1. Suppose that z is an element of p(x). If dimA > 0 then
B(z,||(z — 2)7Y|71) is a subset of p(z).

2. 2+ (z — 2)~! is holomorphic on p(z) and

dn
dzn

for Yn =0, 1, ...and for Vz of p(z).

(x—2)"t=nl((x —2z)" )" *!



3. Suppose that z; and zy are elements of p(z).
(x—21)" = (z—2)=(zn—2)(c-2)"(z-2)"
= (21 —2)(xz—2) (z—2)"".

EXAMPLE 2.1
Suppose that z is a continuous function on R™ (Example [1.1]).

1. o(x) = z(R").
2. dimker(z — 2) = 0 if and only if m™(z~1({z})) = 0 for Vz of C.

3 Closable Operators on Hilbert Spaces

Suppose that H, H', Hy, Hy, H3 are Hilbert spaces.

REMARK 3.1
Suppose that x is a linear mapping of a subspace of H into H.

(w6, m) = = Y i*(@(& +iFn), € +i*n)

for V¢ and Vn of dom .

DEFINITION 3.1
Suppose that z is a closable operator of H into H’. The unique closed operator
x* of H' into H such that

domz* ={ne€ H : &~ (x€,n) is bounded on dom z }

and (x€,n) = (&, x*n) for V¢ of dom x and for Vn of dom a* is called the adjoint
of x.

REMARK 3.2 1. kerz* = (ranz)t.
2. The second adjoint of a closable operator is the closure.

3. The adjoint of the sum of a closable operator and a bounded operator is
the sum of the adjoints.

4. If = is bounded then z* is bounded and ||z*|| = ||z||.

DEFINITION 3.2
Suppose that z is a conjugate linear closable operator of H into H’. The unique
conjugate linear closed operator z* of H' into H such that

domz* ={ne€ H : &~ (n,z€) is bounded on dom x }

and (n, z€) = (&, x*n) for V¢ of dom x and for Vn of dom a* is called the adjoint
of x.



REMARK 3.3 1. kerz* = (ranz)*.
2. The second adjoint of a conjugate linear closable operator is the closure.

3. The adjoint of the sum of a conjugate linear closable operator and a con-
jugate linear bounded operator is the sum of the adjoints.

4. If = is bounded then z* is bounded and ||z*|| = ||z||.

ProrosiTION 3.1
A densely defined operator x of H into H' is closable if

{ne H : & (x€,7m) is bounded on dom z }

is a dense subspace of H'.

PROPOSITION 3.2
A densely defined conjugate linear operator x of H into H' is closable if

{ne H : & (n,2€) is bounded on dom x }

is a dense subspace of H'.

ProproSITION 3.3
Suppose that z is a closed operator of H into H'. If x and x* are injective then
71 is a closed operator of H' into H such that (z71)* = (2*)~L.

PRrROPOSITION 3.4
Suppose that 21 (resp. z2) is a closed operator of Hy (resp. Hs) into Hs (resp.
Hj) such that zoxq and xfx} are densely defined.

1. xzom; is closable and (zox1)* is an extension of xfx3.
2. If x5 is bounded then (zz1)* = zjz5.

PRroOPOSITION 3.5
Suppose that z is a closed operator of H into H’. The following are equivalent.

1. z is a partial isometry.
2. x*x is a projection.
3. x* is a partial isometry.
4. xx* is a projection.
In this case z*z is a projection onto (ker z)* and xx* is a projection onto ran x.

PROPOSITION 3.6
Suppose that x is a conjugate linear closed operator of H into H'. The following
are equivalent.

1. z is a conjugate linear partial isometry.



2. x*x is a projection.
3. x* is a conjugate linear partial isometry.
4. xx* is a projection.
In this case z*x is a projection onto (ker z)* and xz* is a projection onto ran z.

ProrosIiTION 3.7
Suppose that z is a closed operator of H into H'.

HoH = {£6(~x): € € doma} & { (") &7 : 7 € domz* }
and
|(zz* 4+ 1) 12| <1, (za* + 1)tz = z(z*z + 1)1

DEFINITION 3.3
A dense subspace of the domain of a closed operator is called a core for the
operator if the operator is the closure of the restriction of the operator to the
subspace.

THEOREM 3.1 (Polar Decomposition)
Suppose that z is a closed operator of H into H'.

1. There exists a unique partial isometry p(x) of H into H' such that ker p(z) =
ker(z*x)Y/? and z = p(x)(z*z)'/? = (x2*)'/?p(z).

2. p(z)f(z*x) = f(xza*)p(z) for a measurable function Vf on (0, c0).

3. p(z™) = p(x)".

REMARK 3.4 1. If kerp = kerr then z = pr is a closed operator of H into H’
such that p(z) = p and (z*z)'/? = r for a partial isometry Vp of H into
H' and for a non-negative self-adjoint operator Vr on H.

2. If ker p* = kerr then z = rp is a closed operator of H into H’ such that
p(z) = p and (x2*)'/2 = r for a partial isometry Vp of H into H' and for
a non-negative self-adjoint operator Vr on H'.

THEOREM 3.2 (Polar Decomposition)
Suppose that x is a conjugate linear closed operator of H into H'.

1. There exists a unique conjugate linear partial isometry p(x) of H into H’
such that ker p(z) = ker(z*z)'/? and z = p(z)(z*x)"/? = (zz*)"/?p(x).

2. p(a)f(z*z) = f(xzx*)*p(x) for a measurable function Vf on (0, c0).
3. p(z”) = p(x)”.

REMARK 3.5 1. If kerp = kerr then x = pr is a conjugate linear closed oper-
ator of H into H’ such that p(x) = p and (z*x)'/? = r for a conjugate
linear partial isometry Vp of H into H’ and for a non-negative self-adjoint
operator Vr on H.



2.

If ker p* = kerr then x = rp is a conjugate linear closed operator of H
into H’ such that p(z) = p and (z2*)'/2 = r for a conjugate linear partial
isometry Vp of H into H' and for a non-negative self-adjoint operator Vr
on H'.

DEFINITION 3.4
A densely defined operator is called a symmetric operator if the numerical range
is real.

REMARK 3.6 1. Suppose that z is a symmetric operator.

S A

(@ = )¢l = [Im 2]]|€]]
for Vz of C and for V¢ of dom .

. Suppose that x is a closed symmetric operator.

Im 2|z — 2) 7| <1
for Vz of p(z).
ran(z — z) is closed for a closed symmetric operator Vz and for Vz of C\R.
The spectrum of a self-adjoint operator is real.
A symmetric operator is closable and extended by the adjoint.

The closure of a symmetric operator is a symmetric operator.

PROPOSITION 3.8
Suppose that x is a symmetric operator on H. The following are equivalent.

1.
2.
3.

x is self-adjoint.
x is closed and dim ker(z — ¢)* = dimker(z +14)* = 0.

ran(z — i) =ran(x + i) = H.

THEOREM 3.3 (Stone’s Theorem)
The set of strongly continuous (resp. norm continuous) one parameter unitary
groups is the set of self-adjoint (resp. bounded self-adjoint) operators.

REMARK 3.7
Suppose that z is a self-adjoint operator.

ethr 1 1d, .
1~ — - ikx
T [z ar 5)] o

exists if and only if £ is an element of dom x for V&.

Ld

ikx _ ikx

for V€ of dom z.



DEFINITION 3.5
A symmetric operator is said to be essentially self-adjoint if the closure is self-
adjoint.

PROPOSITION 3.9
Suppose that z is a symmetric operator on H. The following are equivalent.

1. z is essentially self-adjoint.
2. dimker(x —i)* = dimker(z +4)* = 0.
3. Tan (v —i) =Tan (x +1i) = H.

DEFINITION 3.6
A symmetric operator is said to be non-negative if the numerical range is non-
negative.

REMARK 3.8 1. Suppose that z is a non-negative symmetric operator.
1z + z0)& || = woll€]|
for Vg > 0 and for V¢ of dom z.

2. ran(x + xo) is closed for a closed non-negative symmetric operator Vz and
for Vag > 0.

3. The spectrum of a non-negative self-adjoint operator is non-negative.

ProrosiTioN 3.10
If = is a closed operator of H into H' then z*x is a non-negative self-adjoint
operator on H and dom z*x is a core for x.

REMARK 3.9 1. Suppose that z is a closed operator of H into H'.
domz N (ker )t — Tamz, & a€
is a closed operator of (ker x)* into Tamn .
2. Suppose that z is a (resp. non-negative) self-adjoint operator.
domz N (ker z)* — (kerz)*t, & al
is a (resp. non-negative) self-adjoint operator on (ker z)> .

REMARK 3.10
Suppose that H = @, H; and H' = @, H; are direct sum Hilbert spaces.

1. If (z;); is a family such that x; is a closed operator of H; into H] for Vi
then

T = @xi: {§ € Hdomxi : ZH@H{ZH@MF < oo} — H,
> @%fz

is a closed operator of H into H' such that 2* = @, «} and 2*z = @, z} ;.



2. If (x;); is a family such that x; is a normal operator on H; for Vi then
x = @, z; is a normal operator on H.

3. If (x;); is a family such that a; is a (resp. non-negative) self-adjoint
operator on H; for Vi then z = @, x; is a (resp. non-negative) self-adjoint
operator on H.

4 Spectral Measures

Suppose that X is a set.

DEFINITION 4.1
A mapping P of a g-algebra over X into the set of projections of a von Neumann
algebra is called a spectral measure if P is countably additive with respect to
the ultratopologies and P(X) = 1.

REMARK 4.1
Suppose that P is a spectral measure.

1. P(Sl n SQ) = P(Sl)P(SQ) for VS7 and V.Ss.
2. S — o(P(9)) is a probability measure for a normal state V.

PRrROPOSITION 4.1
A mapping P of a c-algebra into the set of projections of a von Neumann
algebra such that S — (P(5)¢,€) is a probability measure for a unit vector V¢
is a spectral measure.

DEFINITION 4.2
Suppose that P is a spectral measure. We denote the *-algebra of equivalence
classes of elements of the *-algebra of measurable functions by M (P).

DEFINITION 4.3
A closed operator is said to be affiliated with a von Neumann algabra if it
commutes with any unitary element of the commutant.

PROPOSITION 4.2
A normal operator is affiliated with a von Neumann algebra if and only if the
resolution of the identity is affiliated with the von Neumann algabra.

THEOREM 4.1
Suppose that ' is a closed operator on H and that S is a self-adjoint subset of
B(H). The following are equivalent.

1. 2/ is affiliated with S’.

2. x€ is an element of domz’ and z'x€ = za’¢ for Vo of S and for V€ of
dom z'.



PRrOPOSITION 4.3
Suppose that P is a spectral measure affiliated with a von Neumann algebra N.

2P = { 1 € M(P) s 11 = minm s 1] < m)
= min su x)| < 00
P(N)=0 acEXI\)N|f( ) }
is a C*-subalgebra of .

REMARK 4.2
Suppose that N, is separable.

1. There exists a finite measure mutually absolutely continuous with respect
to P. We denote the Banach space of complex measures absolutely con-
tinuous with respect to P by L'(P).

L>(P) = L*(P)*.
2. L*°(P) is a von Neumann subalgebra of N and L>(P), = L(P).

THEOREM 4.2
Suppose that P is a spectral measure.

1. Suppose that f is a measurable function. There exists a unique closed

e [ r@ptan) = [ap(sao)
such that

dom [ e)ptan) = { & [15@PR ) <o |
and

([ r@pnen = [ £@)Peldo)
for V¢ of dom [ f(x)P(dz) and for Vn.

([ ta)pian)y = [ F@iPn)
and
/ F@)P(dx) / f(2)P(dz) = / (@) 2P(dz).
If f is invertible then

[ r@pias)

is injective and

([ rapian) " = [ 1) Piaa).



2. Suppose that f is a real measurable function.

[ r@pias)

is self-adjoint. If f is non-negative then

/ f(2)P(dz)

is non-negative and
/f P(dz))Y/? = /f )Y2P(dx).
3. Suppose that f is a measurable function.

[ t@panps)

P(S) / F(2)P(ds

4. Suppose that f and g are measurable functions.

/|f )| Pl () < /|f )2 Pe(dx))!/? /|g 2P, (dx)) /2

for V¢ and V.

([ #@)Ptaste, [ a@Plaom) = [ )@ Penis)

for V¢ of dom [ f(x)P(dz) and for Vn of dom [ g(x)P(dz).

is an extension of

for VS.

5. Suppose that f and g are measurable functions.
om0 )

= dom/f (z)P(dzx) ﬁdom/(f+9)($)P(dx)

- dom/g(m)P(dm) N dom/(f + g)(z)P(dx)

and
[+ 9apn)

is an extension of

/ (@) P(dz) + / o(2) P(dz).

10



6. Suppose that f and g are measurable functions.

dom / o(z) P(dz) / F(@)P(dz)
~ dom / F(2)P(dz) N dom / F(@)g(z) P(dz)
and
[ t@g@piao)
is an extension of

[ st@)ptas) [ f@ppiao).

7. Suppose that f is a measurable function.
| [ f@P@)] =117
DEFINITION 4.4

A closed operator is called a normal operator if it commutes with the adjoint.

THEOREM 4.3 (Spectral Theorem)
There exists a unique spectral measure P, on the complex plane such that

x = /x'Px (dz")
for a normal operator V.

REMARK 4.3
The support of the resolution of the identity is the spectrum.

PROPOSITION 4.4

|zl = sup |a']
z/€o(x)

for a normal operator Vz.

THEOREM 4.4 (Spectral Mapping Theorem)
Suppose that z is a normal operator.

o(f(z)) = flo(z))

for a continuous function Vf on o(z).

PROPOSITION 4.5
2'/2 is the unique non-negative self-adjoint operator such that z'/2z/2 = z for
a non-negative self-adjoint operator Vz.

11



THEOREM 4.5

1 o0
= z/ e~ H@=2) g,
r—2z 0

for a self-adjoint operator Va and for Vz of the upper half-plane.
PROPOSITION 4.6
ker(z — o) = ran P, ({xo})
for a self-adjoint operator Va and for a real number Vzg.

PROPOSITION 4.7
Suppose that (P;); is a family of spectral measures on a measurable space.

S (@ P)S) =P PRsS)
is a spectral measure and

[ @@ Pitdr) = [ f)pi(an

for a measurable function Vf.

PROPOSITION 4.8
If v = @, x; is a direct sum normal operator then P, = @, P,, and f(x) =
P, f(x;) for a measurable function Vf on a Borel set such that P,(dom f) = 1.

REMARK 4.4
If + = @, x; is a direct sum normal operator then o(x) = J, o(x;).

PRrROPOSITION 4.9 1. Suppose that P is a spectral measure and that f is a mea-
surable function on a measurable set such that P(dom f) = 1. If g is a
measurable function on a Borel set such that P(f~!(domg)) = 1 then

o[ swran)= [ o n@p)

2. Suppose that x is a normal operator and that f is a measurable function
on a Borel set such that P,(dom f) = 1. If g is a measurable function on
a Borel set such that Py, (dom g) = P,(f!(domg)) =1 then g(f(z)) =

(go f)(@).

REMARK 4.5
Suppose that J is a conjugate linear orthogonal operator of H onto H'.

1. If = is a closable operator on H then (JxJ*)* = Jx*J*.

12



2. If P is a spectral measure relative to H then
S+ JP(S)J*

is a spectral measure relative to H' and

J / f(2)P(d))T* = / F@)JP(dz)J*

for a measurable function Vf.
3. If x is a self-adjoint operator on H then JzJ* is a self-adjoint operator on

H' and
Py (8) = JP,(8)J*

for a Borel set VS.

5 Generalized Spectral Measures

DEFINITION 5.1
A mapping IT of a o-algebra over X into the set of positive elements of a von
Neumann algebra is called a generalized spectral measure if IT is countably
additive with respect to the ultratopologies and II(X) = 1.

PROPOSITION 5.1
A mapping II of a o-algebra into the set of positive elements of a von Neumann
algebra such that S — (II(S)¢&, &) is a probability measure for a unit vector V¢
is a generalized spectral measure.
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