Unbounded Operators

Yasushi Ikeda

October 6, 2025

Contents

1	Closed Operators	1
2	Spectrum	2
3	Closable Operators on Hilbert Spaces	3
4	Spectral Measures	8
5	Generalized Spectral Measures	13

1 Closed Operators

Suppose that A and B are Banach spaces.

Definition 1.1

A linear mapping of a dense subspace of A into B is called a densely defined operator of A into B.

Definition 1.2

A densely defined operator is called a closed operator if the graph is closed.

Remark 1.1

The sum of a closed operator and a bounded operator is closed.

Example 1.1

Suppose that μ is a measure.

1. Suppose that x is a measurable function.

$$\{\xi\in L^2(\mu): x\xi\in L^2(\mu)\}\to L^2(\mu), \qquad \qquad \xi\mapsto x\xi$$

is a normal operator on $L^2(\mu)$ and the adjoint is

$$\{\xi \in L^2(\mu) : \overline{x}\xi \in L^2(\mu)\} \to L^2(\mu), \qquad \xi \mapsto \overline{x}\xi.$$

2. $M(\mu)/\{x: x=0 \text{ locally a.e.}\}\$ is a subset of the set of closed operators on $L^2(\mu)$.

THEOREM 1.1 (Closed Graph Theorem)

A closed operator such that the domain is complete is bounded.

Definition 1.3

A densely defined operator extended by a closed operator is called a closable operator.

Remark 1.2

The sum of a closable operator and a bounded operator is closable.

Definition 1.4

Suppose that x is a closable operator. The unique closed operator \overline{x} extending x such that

$$\operatorname{dom} \overline{x} = \min \{ \operatorname{dom} x' : x' \text{ is a closed operator extending } x \}$$

is called the closure of x.

Remark 1.3

The closure of the sum of a closable operator and a bounded operator is the sum of the closure of the closable operator and the bounded operator.

Proposition 1.1

A densely defined operator is closable if and only if

$$\{\eta:0\oplus\eta\text{ is an element of the closure of the graph}\}=\{0\}.$$

In this case the graph of the closure is the closure of the graph.

2 Spectrum

Suppose that x is a closed operator on a complex Banach space A.

Definition 2.1

The open set

$$\rho(x) = \{ z \in \mathbb{C} : \dim \ker(x - z) = 0 \text{ and } \operatorname{ran}(x - z) = A \}$$

is called the resolvent set of x.

Remark 2.1 1. Suppose that z is an element of $\rho(x)$. If dim A>0 then $B(z,\|(x-z)^{-1}\|^{-1})$ is a subset of $\rho(x)$.

2. $z \mapsto (x-z)^{-1}$ is holomorphic on $\rho(x)$ and

$$\frac{d^n}{dz^n}(x-z)^{-1} = n!((x-z)^{-1})^{n+1}$$

for $\forall n = 0, 1, \dots$ and for $\forall z$ of $\rho(x)$.

3. Suppose that z_1 and z_2 are elements of $\rho(x)$.

$$(x-z_1)^{-1} - (x-z_2)^{-1} = (z_1 - z_2)(x-z_1)^{-1}(x-z_2)^{-1}$$
$$= (z_1 - z_2)(x-z_2)^{-1}(x-z_1)^{-1}.$$

Example 2.1

Suppose that x is a continuous function on \mathbb{R}^n (Example 1.1).

- 1. $\sigma(x) = \overline{x(\mathbb{R}^n)}$.
- 2. dim $\ker(x-z)=0$ if and only if $m^n(x^{-1}(\{z\}))=0$ for $\forall z$ of \mathbb{C} .

3 Closable Operators on Hilbert Spaces

Suppose that H, H', H_1, H_2, H_3 are Hilbert spaces.

Remark 3.1

Suppose that x is a linear mapping of a subspace of H into H.

$$(x\xi,\eta) = \frac{1}{4} \sum_{k=0}^{3} i^k (x(\xi + i^k \eta), \xi + i^k \eta)$$

for $\forall \xi$ and $\forall \eta$ of dom x.

Definition 3.1

Suppose that x is a closable operator of H into H'. The unique closed operator x^* of H' into H such that

$$\operatorname{dom} x^* = \{ \eta \in H' : \xi \mapsto (x\xi, \eta) \text{ is bounded on } \operatorname{dom} x \}$$

and $(x\xi, \eta) = (\xi, x^*\eta)$ for $\forall \xi$ of dom x and for $\forall \eta$ of dom x^* is called the adjoint of x.

Remark 3.2 1. $\ker x^* = (\operatorname{ran} x)^{\perp}$.

- 2. The second adjoint of a closable operator is the closure.
- 3. The adjoint of the sum of a closable operator and a bounded operator is the sum of the adjoints.
- 4. If x is bounded then x^* is bounded and $||x^*|| = ||x||$.

Definition 3.2

Suppose that x is a conjugate linear closable operator of H into H'. The unique conjugate linear closed operator x^* of H' into H such that

$$\operatorname{dom} x^* = \{ \eta \in H' : \xi \mapsto (\eta, x\xi) \text{ is bounded on } \operatorname{dom} x \}$$

and $(\eta, x\xi) = (\xi, x^*\eta)$ for $\forall \xi$ of dom x and for $\forall \eta$ of dom x^* is called the adjoint of x.

Remark 3.3 1. $\ker x^* = (\operatorname{ran} x)^{\perp}$.

- 2. The second adjoint of a conjugate linear closable operator is the closure.
- 3. The adjoint of the sum of a conjugate linear closable operator and a conjugate linear bounded operator is the sum of the adjoints.
- 4. If x is bounded then x^* is bounded and $||x^*|| = ||x||$.

Proposition 3.1

A densely defined operator x of H into H' is closable if

$$\{ \eta \in H' : \xi \mapsto (x\xi, \eta) \text{ is bounded on dom } x \}$$

is a dense subspace of H'.

Proposition 3.2

A densely defined conjugate linear operator x of H into H' is closable if

$$\{ \eta \in H' : \xi \mapsto (\eta, x\xi) \text{ is bounded on dom } x \}$$

is a dense subspace of H'.

Proposition 3.3

Suppose that x is a closed operator of H into H'. If x and x^* are injective then x^{-1} is a closed operator of H' into H such that $(x^{-1})^* = (x^*)^{-1}$.

Proposition 3.4

Suppose that x_1 (resp. x_2) is a closed operator of H_1 (resp. H_2) into H_2 (resp. H_3) such that x_2x_1 and $x_1^*x_2^*$ are densely defined.

- 1. x_2x_1 is closable and $(x_2x_1)^*$ is an extension of $x_1^*x_2^*$.
- 2. If x_2 is bounded then $(x_2x_1)^* = x_1^*x_2^*$.

Proposition 3.5

Suppose that x is a closed operator of H into H'. The following are equivalent.

- 1. x is a partial isometry.
- 2. x^*x is a projection.
- 3. x^* is a partial isometry.
- 4. xx^* is a projection.

In this case x^*x is a projection onto $(\ker x)^{\perp}$ and xx^* is a projection onto ran x.

Proposition 3.6

Suppose that x is a conjugate linear closed operator of H into H'. The following are equivalent.

1. x is a conjugate linear partial isometry.

- 2. x^*x is a projection.
- 3. x^* is a conjugate linear partial isometry.
- 4. xx^* is a projection.

In this case x^*x is a projection onto $(\ker x)^{\perp}$ and xx^* is a projection onto ran x.

Proposition 3.7

Suppose that x is a closed operator of H into H'.

$$H \oplus H' = \{ \xi \oplus (-x\xi) : \xi \in \operatorname{dom} x \} \oplus \{ (x^*\eta) \oplus \eta : \eta \in \operatorname{dom} x^* \}$$

and

$$||(xx^*+1)^{-1}x|| \le 1,$$
 $\overline{(xx^*+1)^{-1}x} = x(x^*x+1)^{-1}.$

Definition 3.3

A dense subspace of the domain of a closed operator is called a core for the operator if the operator is the closure of the restriction of the operator to the subspace.

Theorem 3.1 (Polar Decomposition)

Suppose that x is a closed operator of H into H'.

- 1. There exists a unique partial isometry p(x) of H into H' such that $\ker p(x) = \ker(x^*x)^{1/2}$ and $x = p(x)(x^*x)^{1/2} = (xx^*)^{1/2}p(x)$.
- 2. $p(x)f(x^*x) = f(xx^*)p(x)$ for a measurable function $\forall f$ on $(0, \infty)$.
- 3. $p(x^*) = p(x)^*$.
- REMARK 3.4 1. If $\ker p = \ker r$ then x = pr is a closed operator of H into H' such that p(x) = p and $(x^*x)^{1/2} = r$ for a partial isometry $\forall p$ of H into H' and for a non-negative self-adjoint operator $\forall r$ on H.
 - 2. If $\ker p^* = \ker r$ then x = rp is a closed operator of H into H' such that p(x) = p and $(xx^*)^{1/2} = r$ for a partial isometry $\forall p$ of H into H' and for a non-negative self-adjoint operator $\forall r$ on H'.

THEOREM 3.2 (Polar Decomposition)

Suppose that x is a conjugate linear closed operator of H into H'.

- 1. There exists a unique conjugate linear partial isometry p(x) of H into H' such that $\ker p(x) = \ker(x^*x)^{1/2}$ and $x = p(x)(x^*x)^{1/2} = (xx^*)^{1/2}p(x)$.
- 2. $p(x)f(x^*x) = f(xx^*)^*p(x)$ for a measurable function $\forall f$ on $(0,\infty)$.
- 3. $p(x^*) = p(x)^*$.
- Remark 3.5 1. If $\ker p = \ker r$ then x = pr is a conjugate linear closed operator of H into H' such that p(x) = p and $(x^*x)^{1/2} = r$ for a conjugate linear partial isometry $\forall p$ of H into H' and for a non-negative self-adjoint operator $\forall r$ on H.

2. If $\ker p^* = \ker r$ then x = rp is a conjugate linear closed operator of H into H' such that p(x) = p and $(xx^*)^{1/2} = r$ for a conjugate linear partial isometry $\forall p$ of H into H' and for a non-negative self-adjoint operator $\forall r$ on H'.

Definition 3.4

A densely defined operator is called a symmetric operator if the numerical range is real.

Remark 3.6 1. Suppose that x is a symmetric operator.

$$||(x-z)\xi|| \ge ||\operatorname{Im} z|||\xi||$$

for $\forall z$ of \mathbb{C} and for $\forall \xi$ of dom x.

2. Suppose that x is a closed symmetric operator.

$$|\text{Im } z| \|(x-z)^{-1}\| \le 1$$

for $\forall z$ of $\rho(x)$.

- 3. ran(x-z) is closed for a closed symmetric operator $\forall x$ and for $\forall z$ of $\mathbb{C} \setminus \mathbb{R}$.
- 4. The spectrum of a self-adjoint operator is real.
- 5. A symmetric operator is closable and extended by the adjoint.
- 6. The closure of a symmetric operator is a symmetric operator.

Proposition 3.8

Suppose that x is a symmetric operator on H. The following are equivalent.

- 1. x is self-adjoint.
- 2. x is closed and dim $ker(x-i)^* = dim ker(x+i)^* = 0$.
- 3. ran(x i) = ran(x + i) = H.

THEOREM 3.3 (Stone's Theorem)

The set of strongly continuous (resp. norm continuous) one parameter unitary groups is the set of self-adjoint (resp. bounded self-adjoint) operators.

Remark 3.7

Suppose that x is a self-adjoint operator.

$$\lim_{k\to 0} \frac{e^{ikx}-1}{ik}\xi = \left[\frac{1}{i}\frac{d}{dk}(e^{ikx}\xi)\right]_{k=0}$$

exists if and only if ξ is an element of dom x for $\forall \xi$.

$$\frac{1}{i}\frac{d}{dk}(e^{ikx}\xi) = xe^{ikx}\xi$$

for $\forall \xi$ of dom x.

Definition 3.5

A symmetric operator is said to be essentially self-adjoint if the closure is self-adjoint.

Proposition 3.9

Suppose that x is a symmetric operator on H. The following are equivalent.

- 1. x is essentially self-adjoint.
- 2. $\dim \ker(x-i)^* = \dim \ker(x+i)^* = 0$.
- 3. $\overline{\operatorname{ran}}(x-i) = \overline{\operatorname{ran}}(x+i) = H$.

Definition 3.6

A symmetric operator is said to be non-negative if the numerical range is non-negative.

Remark 3.8 1. Suppose that x is a non-negative symmetric operator.

$$||(x+x_0)\xi|| \ge x_0||\xi||$$

for $\forall x_0 \geq 0$ and for $\forall \xi$ of dom x.

- 2. $ran(x+x_0)$ is closed for a closed non-negative symmetric operator $\forall x$ and for $\forall x_0 > 0$.
- 3. The spectrum of a non-negative self-adjoint operator is non-negative.

Proposition 3.10

If x is a closed operator of H into H' then x^*x is a non-negative self-adjoint operator on H and dom x^*x is a core for x.

Remark 3.9 1. Suppose that x is a closed operator of H into H'.

$$\operatorname{dom} x \cap (\ker x)^{\perp} \to \overline{\operatorname{ran}} x, \qquad \xi \mapsto x\xi$$

is a closed operator of $(\ker x)^{\perp}$ into $\overline{\operatorname{ran}} x$.

2. Suppose that x is a (resp. non-negative) self-adjoint operator.

$$\operatorname{dom} x \cap (\ker x)^{\perp} \to (\ker x)^{\perp}, \qquad \xi \mapsto x\xi$$

is a (resp. non-negative) self-adjoint operator on $(\ker x)^{\perp}$.

Remark 3.10

Suppose that $H = \bigoplus_i H_i$ and $H' = \bigoplus_i H'_i$ are direct sum Hilbert spaces.

1. If $(x_i)_i$ is a family such that x_i is a closed operator of H_i into H'_i for $\forall i$

$$x = \bigoplus_{i} x_i : \left\{ \xi \in \prod_{i} \operatorname{dom} x_i : \sum_{i} \|\xi_i\|^2, \sum_{i} \|x_i \xi_i\|^2 < \infty \right\} \to H',$$
$$\xi \mapsto \bigoplus_{i} x_i \xi_i$$

is a closed operator of H into H' such that $x^* = \bigoplus_i x_i^*$ and $x^*x = \bigoplus_i x_i^*x_i$.

- 2. If $(x_i)_i$ is a family such that x_i is a normal operator on H_i for $\forall i$ then $x = \bigoplus_i x_i$ is a normal operator on H.
- 3. If $(x_i)_i$ is a family such that x_i is a (resp. non-negative) self-adjoint operator on H_i for $\forall i$ then $x = \bigoplus_i x_i$ is a (resp. non-negative) self-adjoint operator on H.

4 Spectral Measures

Suppose that X is a set.

Definition 4.1

A mapping P of a σ -algebra over X into the set of projections of a von Neumann algebra is called a spectral measure if P is countably additive with respect to the ultratopologies and P(X) = 1.

Remark 4.1

Suppose that P is a spectral measure.

- 1. $P(S_1 \cap S_2) = P(S_1)P(S_2)$ for $\forall S_1$ and $\forall S_2$.
- 2. $S \mapsto \varphi(P(S))$ is a probability measure for a normal state $\forall \varphi$.

Proposition 4.1

A mapping P of a σ -algebra into the set of projections of a von Neumann algebra such that $S \mapsto (P(S)\xi, \xi)$ is a probability measure for a unit vector $\forall \xi$ is a spectral measure.

Definition 4.2

Suppose that P is a spectral measure. We denote the *-algebra of equivalence classes of elements of the *-algebra of measurable functions by M(P).

Definition 4.3

A closed operator is said to be affiliated with a von Neumann algabra if it commutes with any unitary element of the commutant.

Proposition 4.2

A normal operator is affiliated with a von Neumann algebra if and only if the resolution of the identity is affiliated with the von Neumann algabra.

THEOREM 4.1

Suppose that x' is a closed operator on H and that S is a self-adjoint subset of B(H). The following are equivalent.

- 1. x' is affiliated with S'.
- 2. $x\xi$ is an element of dom x' and $x'x\xi = xx'\xi$ for $\forall x$ of S and for $\forall \xi$ of dom x'.

Proposition 4.3

Suppose that P is a spectral measure affiliated with a von Neumann algebra N.

$$L^{\infty}(P) = \left\{ f \in M(P) : ||f||_{\infty} = \min\{ m : |f| \le m \} \right.$$
$$= \min_{P(N)=0} \sup_{x \in X \setminus N} |f(x)| < \infty \left. \right\}$$

is a C^* -subalgebra of N.

Remark 4.2

Suppose that N_* is separable.

1. There exists a finite measure mutually absolutely continuous with respect to P. We denote the Banach space of complex measures absolutely continuous with respect to P by $L^1(P)$.

$$L^{\infty}(P) = L^{1}(P)^{*}.$$

2. $L^{\infty}(P)$ is a von Neumann subalgebra of N and $L^{\infty}(P)_* = L^1(P)$.

Theorem 4.2

Suppose that P is a spectral measure.

1. Suppose that f is a measurable function. There exists a unique closed operator

$$\int f(x)P(dx) = \int xP(f^{-1}(dx))$$

such that

$$\operatorname{dom} \int f(x)P(dx) = \left\{ \xi : \int |f(x)|^2 P_{\xi}(dx) < \infty \right\}$$

and

$$(\int f(x)P(dx)\xi,\eta) = \int f(x)P_{\xi,\eta}(dx)$$

for $\forall \xi$ of dom $\int f(x)P(dx)$ and for $\forall \eta$.

$$(\int f(x)P(dx))^* = \int \overline{f(x)}P(dx)$$

and

$$\int \overline{f(x)} P(dx) \int f(x) P(dx) = \int |f(x)|^2 P(dx).$$

If f is invertible then

$$\int f(x)P(dx)$$

is injective and

$$(\int f(x)P(dx))^{-1} = \int f(x)^{-1}P(dx).$$

2. Suppose that f is a real measurable function.

$$\int f(x)P(dx)$$

is self-adjoint. If f is non-negative then

$$\int f(x)P(dx)$$

is non-negative and

$$(\int f(x)P(dx))^{1/2} = \int f(x)^{1/2}P(dx).$$

3. Suppose that f is a measurable function.

$$\int f(x)P(dx)P(S)$$

is an extension of

$$P(S) \int f(x)P(dx)$$

for $\forall S$.

4. Suppose that f and g are measurable functions.

$$\int |f(x)g(x)||P_{\xi,\eta}|(dx) \le (\int |f(x)|^2 P_{\xi}(dx))^{1/2} (\int |g(x)|^2 P_{\eta}(dx))^{1/2}$$

for $\forall \xi$ and $\forall \eta$.

$$(\int f(x)P(dx)\xi, \int g(x)P(dx)\eta) = \int f(x)\overline{g(x)}P_{\xi,\eta}(dx)$$

for $\forall \xi$ of dom $\int f(x)P(dx)$ and for $\forall \eta$ of dom $\int g(x)P(dx)$.

5. Suppose that f and g are measurable functions.

$$dom\left(\int f(x)P(dx) + \int g(x)P(dx)\right)$$

$$= dom \int f(x)P(dx) \cap dom \int (f+g)(x)P(dx)$$

$$= dom \int g(x)P(dx) \cap dom \int (f+g)(x)P(dx)$$

and

$$\int (f+g)(x)P(dx)$$

is an extension of

$$\int f(x)P(dx) + \int g(x)P(dx).$$

6. Suppose that f and g are measurable functions.

$$\operatorname{dom} \int g(x)P(dx) \int f(x)P(dx)$$

$$= \operatorname{dom} \int f(x)P(dx) \cap \operatorname{dom} \int f(x)g(x)P(dx)$$

and

$$\int f(x)g(x)P(dx)$$

is an extension of

$$\int g(x)P(dx) \int f(x)P(dx).$$

7. Suppose that f is a measurable function.

$$\|\int f(x)P(dx)\| = \|f\|_{\infty}.$$

Definition 4.4

A closed operator is called a normal operator if it commutes with the adjoint.

Theorem 4.3 (Spectral Theorem)

There exists a unique spectral measure P_x on the complex plane such that

$$x = \int x' P_x(dx')$$

for a normal operator $\forall x$.

Remark 4.3

The support of the resolution of the identity is the spectrum.

Proposition 4.4

$$||x|| = \sup_{x' \in \sigma(x)} |x'|$$

for a normal operator $\forall x$.

Theorem 4.4 (Spectral Mapping Theorem)

Suppose that x is a normal operator.

$$\sigma(f(x)) = \overline{f(\sigma(x))}$$

for a continuous function $\forall f$ on $\sigma(x)$.

Proposition 4.5

 $x^{1/2}$ is the unique non-negative self-adjoint operator such that $x^{1/2}x^{1/2} = x$ for a non-negative self-adjoint operator $\forall x$.

Theorem 4.5

$$\frac{1}{x-z} = i \int_0^\infty e^{-ik(x-z)} \, dk$$

for a self-adjoint operator $\forall x$ and for $\forall z$ of the upper half-plane.

Proposition 4.6

$$\ker(x - x_0) = \operatorname{ran} P_x(\{x_0\})$$

for a self-adjoint operator $\forall x$ and for a real number $\forall x_0$.

Proposition 4.7

Suppose that $(P_i)_i$ is a family of spectral measures on a measurable space.

$$S \mapsto (\bigoplus_{i} P_{i})(S) = \bigoplus_{i} P_{i}(S)$$

is a spectral measure and

$$\int f(x)(\bigoplus_{i} P_{i})(dx) = \bigoplus_{i} \int f(x)P_{i}(dx)$$

for a measurable function $\forall f$.

Proposition 4.8

If $x = \bigoplus_i x_i$ is a direct sum normal operator then $P_x = \bigoplus_i P_{x_i}$ and $f(x) = \bigoplus_i f(x_i)$ for a measurable function $\forall f$ on a Borel set such that $P_x(\text{dom } f) = 1$.

Remark 4.4

If $x = \bigoplus_i x_i$ is a direct sum normal operator then $\sigma(x) = \overline{\bigcup_i \sigma(x_i)}$.

PROPOSITION 4.9 1. Suppose that P is a spectral measure and that f is a measurable function on a measurable set such that P(dom f) = 1. If g is a measurable function on a Borel set such that $P(f^{-1}(\text{dom } g)) = 1$ then

$$g\bigg(\int_{\mathrm{dom}\, f} f(x)P(dx)\bigg) = \int_{f^{-1}(\mathrm{dom}\, g)} (g\circ f)(x)P(dx).$$

2. Suppose that x is a normal operator and that f is a measurable function on a Borel set such that $P_x(\text{dom } f) = 1$. If g is a measurable function on a Borel set such that $P_{f(x)}(\text{dom } g) = P_x(f^{-1}(\text{dom } g)) = 1$ then $g(f(x)) = (g \circ f)(x)$.

Remark 4.5

Suppose that J is a conjugate linear orthogonal operator of H onto H'.

1. If x is a closable operator on H then $(JxJ^*)^* = Jx^*J^*$.

2. If P is a spectral measure relative to H then

$$S \mapsto JP(S)J^*$$

is a spectral measure relative to H' and

$$J(\int f(x)P(dx))J^* = \int \overline{f(x)}JP(dx)J^*$$

for a measurable function $\forall f$.

3. If x is a self-adjoint operator on H then JxJ^* is a self-adjoint operator on H' and

$$P_{JxJ^*}(S) = JP_x(S)J^*$$

for a Borel set $\forall S$.

5 Generalized Spectral Measures

Definition 5.1

A mapping Π of a σ -algebra over X into the set of positive elements of a von Neumann algebra is called a generalized spectral measure if Π is countably additive with respect to the ultratopologies and $\Pi(X) = 1$.

Proposition 5.1

A mapping Π of a σ -algebra into the set of positive elements of a von Neumann algebra such that $S \mapsto (\Pi(S)\xi, \xi)$ is a probability measure for a unit vector $\forall \xi$ is a generalized spectral measure.

References

[1] Asao Arai and Hiroshi Ezawa. Mathematical Structure of Quantum Mechanics. Asakura Publishing, 1999.