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1 Tomita’s Theorem - Shortest Course

1.1 Closed operators associated with the cyclic and sepa-
rating vector

Suppose that N is a von Neumann algebra on a Hilbert space H and ξ is a
cyclic and separating vector for N .

We define a conjugate linear operator S0 on Nξ by

S0xξ = x∗ξ.

Then we have S0 = S−1
0 . Similarly, we define an operator F0 on N ′ξ by

F0x
′ξ = x′∗ξ.

Suppose that (x, x′) is any element of N ×N ′. Then we have

(x′ξ, S0xξ) = (x′ξ, x∗ξ) = (xξ, x′∗ξ) = (xξ, F0x
′ξ).

Therefore, the operators S0 and F0 are closable. We define S = S0 and F = F0.
Then the operator F is extended by S∗.

Lemma 1.1
Suppose that S0 = S−1

0 is a conjugate linear closable operator on a Hilbert
space H and let S = S0. Then we have S = S−1 and S∗ = S∗−1.
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Proof. It is sufficient to show that S∗ = S∗−1 because if we show S∗0 = S∗ =
S∗−1 = S∗−1

0 , then we have S = S∗∗ = S∗∗−1 = S−1. Suppose that ξ is an
element of domS0 and η is an element of domS∗. Then we have (S∗η, S0ξ) =
(ξ, η). Therefore, the vector S∗η belongs to domS∗ and S∗S∗η = η.

Therefore, we have S = S−1 and S∗ = S∗−1.

Proposition 1.1
Suppose that η is an element of domS∗. Then the operator

xξ 7→ xη, Nξ → H

is closable. We write x′η for its closure. Then the operator x′η is affiliated with
N ′ and the operator x′S∗η is extended by x′∗η .

Proof. We define an operator a0 of Nξ into H by a0xξ = xη. Similarly, we
define an operator b0 of Nξ into H by b0xξ = xS∗η. Then for each x, y ∈ N ,
we have

(a0xξ, yξ) = (η, x∗yξ)

= (η, Sy∗xξ)

= (y∗xξ, S∗η)

= (xξ, yS∗η)

= (xξ, b0yξ).

Therefore, the operators a0 and b0 are closable and the operator x′S∗η = b0 is

extended by x′∗η = a∗0. Suppose that x is an element of N and ξ is an element
of domx′η. Then there exists a sequence (xn)∞n=1 of N such that

(ξ, x′ηξ) = lim
n→∞

(xnξ, xnη).

Then we have

xx′ηξ = lim
n→∞

xxnη = lim
n→∞

x′ηxxnξ = x′ηxξ.

Therefore, the operator x′η is affiliated with N ′.

Suppose that η is an element of domS∗ and let x′ = x′η. Suppose that
x′ = v′|x′| is a polar decomposition and

|x′| =
∫ ∞

0

sP ′(ds)

is a spectral decomposition. We define P ′n = P ′([0, n]) and

x′n = x′P ′n = v′
∫ n

0

sP ′(ds) ∈ N ′.
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Then we have

‖η − x′nξ‖2 = ‖x′ξ − x′P ′nξ‖2

≤ ‖(|x′| − |x′|P ′n)ξ‖2

=

∫
(n,∞)

s2‖P ′(ds)ξ‖2 → 0

and

‖S∗η − x′∗n ξ‖2 = ‖|x′|v′∗ξ − |x′|P ′nv′∗ξ‖2

=

∫
(n,∞)

s2‖P ′(ds)v′∗ξ‖2 → 0.

Therefore, the vector η belongs to domF and we have F = S∗. We define

CC(0,∞)+ =
{
f : [0,∞)→ [0,∞) : f is continuous

and supp f is contained in (0,∞)
}
.

Proposition 1.2
Suppose that η is an element of domS∗. Then the vector f(x′ηx

′∗
η )η belongs

to domS∗ and we have S∗f(x′ηx
′∗
η )η = f(x′∗η x

′
η)S∗η for each element f of

CC(0,∞)+.

Proof. There exists an element g of CC(0,∞)+ such that f(x) = xg(x) for
x > 0. Suppose that x is an element of N . Then we have(

f(x′ηx
′∗
η )η, S0xξ

)
=
(
x′∗η g(x′ηx

′∗
η )η, x∗S∗η

)
=
(
x′∗η g(x′ηx

′∗
η )xη, S∗η

)
=
(
x′∗η g(x′ηx

′∗
η )x′ηxξ, S

∗η
)

=
(
f(x′∗η x

′
η)xξ, S∗η

)
=
(
xξ, f(x′∗η x

′
η)S∗η

)
.

Therefore, the vector f(x′ηx
′∗
η )η belongs to domS∗ and we have S∗f(x′ηx

′∗
η )η =

f(x′∗η x
′
η)S∗η.

Proposition 1.3

N ′ = {x′η : η is an element of domS∗ such that x′η is bounded }.

Proof. Suppose that x′ is an element of N ′. We define an element η = x′ξ of
domS∗. Suppose that x is an element of N . Then we have x′ηxξ = xx′ξ = x′xξ.
Therefore, the operator x′η is bounded and x′ = x′η.
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1.2 Polar decomposition - interlude

Suppose that S = S−1 is a conjugate linear closed operator on a Hilbert space
H and let S = J |S| be the polar decomposition.

Then ker J = kerS = {0} and the operator J is a conjugate linear isometry.
Since the operator |S|2 is injective and positive, we can define a self-adjoint
operator h = − log|S|2. Then we have

S = J exp

(
−h

2

)
.

Remark 1.1
There exists a unique pair (J, h) of a conjugate linear isometry J and a (possibly
unbounded) self-adjoint operator h such that

S = J exp

(
−h

2

)
.

Since ker J∗ = kerS∗ = {0}, we have J∗ = J−1. Since |S∗|2 = SS∗ =
(S∗S)−1 = |S|−2, we have

|S∗| = exp

(
h

2

)
.

Therefore, we have

J∗ exp

(
h

2

)
= S∗ = S∗−1 = J exp

(
h

2

)
and we have J = J∗.

Remark 1.2
The relation J = J∗ = J−1 holds and

S = J exp

(
−h

2

)
= exp

(
h

2

)
J, S∗ = J exp

(
h

2

)
= exp

(
−h

2

)
J.

1.3 Key propositions

Lemma 1.2
Suppose that µ is a Borel measure on [0,∞) and x0 ≥ 0 such that∫ ∞

0

x2f(x)µ(dx) ≤ x2
0

∫ ∞
0

f(x)µ(dx)

for each element f of CC(0,∞)+. Then we have µ((x0,∞)) = 0.

Proof. Suppose that [a, b] is any subinterval of (x0,∞). Then there exists an
element f of CC(0,∞)+ such that

f(x) =
1

x2 − x2
0
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for a ≤ x ≤ b. Then we have

µ([a, b]) =

∫ b

a

(x2 − x2
0)f(x)µ(dx) ≤ 0.

Therefore, we have µ((x0,∞)) = 0.

Proposition 1.4
Suppose that x is an element of N and ω is a real number. Then there exists a
unique element x′ω of N ′ such that

J

(
cosh

h+ ω

2

)−1

xξ = x′ωξ

and we have ‖x′ω‖ ≤ ‖x‖.

Proof. We define

η = J

(
cosh

h+ ω

2

)−1

xξ ∈ domS ∩ domS∗

and let x′ = x′η. Suppose that x′ = v′|x′| is a polar decomposition and

|x′∗| =
∫ ∞

0

sP ′(ds)

is a spectral decomposition. By Proposition 1.3, it is sufficient to show that
‖x′‖ ≤ ‖x‖. Suppose that f is any element of CC(0,∞)+. Since

xξ =

(
cosh

h+ ω

2

)
Jη =

1

2
exp

(
ω

2

)
Sη +

1

2
exp

(
−ω

2

)
S∗η,

we have

‖|x′|
√
f(|x′|)xξ‖2

≥ 4 Re

(
|x′|
√
f(|x′|)1

2
exp

(
ω

2

)
Sη, |x′|

√
f(|x′|)1

2
exp

(
−ω

2

)
S∗η

)
= Re

(
Sη, |x′|2f(|x′|)S∗η

)
.

Therefore, we have

‖|x′|
√
f(|x′|)xξ‖2 ≥ Re

(
Sη, |x′|2f(|x′|)S∗η

)
= Re(|x′∗|2f(|x′∗|)η, η)

= ‖|x′∗|
√
f(|x′∗|)η‖2,
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‖|x′∗|
√
f(|x′∗|)η‖2 ≤ ‖|x′|

√
f(|x′|)xξ‖2

≤ ‖x‖2‖|x′|
√
f(|x′|)ξ‖2

= ‖x‖2‖
√
f(|x′|)|x′|ξ‖2

= ‖x‖2‖
√
f(|x′|)v′∗η‖2

≤ ‖x‖2‖
√
f(|x′∗|)η‖2,∫ ∞

0

s2f(s)‖P ′(ds)η‖2 ≤ ‖x‖2
∫ ∞

0

f(s)‖P ′(ds)η‖2.

By Lemma 1.2, we have P ′((‖x‖,∞))η = 0. We define P ′ = P ′([0, ‖x‖]). Then
we have η = P ′η. Suppose that y is any element of N . Then we have

x′yξ = yη

= P ′yη

= P ′x′yξ

=

∫ ‖x‖
0

sP ′(ds)v′yξ.

Therefore, we have ‖x′‖ ≤ ‖x‖.

Proposition 1.5
Suppose that ζ1 and ζ2 are elements of

dom exp

(
h

2

)
∩ dom exp

(
−h

2

)
.

Then we have

(JxJζ1, ζ2) =
1

2
exp

(
ω

2

)(
x′ω exp

(
h

2

)
ζ1, exp

(
−h

2

)
ζ2

)
+

1

2
exp

(
−ω

2

)(
x′ω exp

(
−h

2

)
ζ1, exp

(
h

2

)
ζ2

)
.

Proof. Suppose that a and b are any elements of N . By Proposition 1.4, there
exist elements a′ and b′ of N ′ such that

J

(
cosh

h

2

)−1

aξ = a′ξ, J

(
cosh

h

2

)−1

bξ = b′ξ.

We have

xξ =
1

2
exp

(
ω

2

)
Sx′ωξ +

1

2
exp

(
−ω

2

)
S∗x′ωξ.

6



Since

(a′∗b′ξ, xξ) = (b′ξ, xa′ξ)

=

(
J

(
cosh

h

2

)−1

bξ, xJ

(
cosh

h

2

)−1

aξ

)
=

((
cosh

h

2

)−1

JxJ

(
cosh

h

2

)−1

aξ, bξ

)
,

(a′∗b′ξ, Sx′ωξ) = (x′ωξ, b
′∗a′ξ)

= (S∗x′∗ω S
∗b′ξ, a′ξ)

=

(
S∗x′∗ω S

∗J

(
cosh

h

2

)−1

bξ, J

(
cosh

h

2

)−1

aξ

)
=

(
exp

(
−h

2

)(
cosh

h

2

)−1

x′ω exp

(
h

2

)(
cosh

h

2

)−1

aξ, bξ

)
,

(a′∗b′ξ, S∗x′ωξ) = (b′ξ, a′S∗x′ωξ)

= (b′ξ, S∗x′ωS
∗a′ξ)

=

(
J

(
cosh

h

2

)−1

bξ, S∗x′ωS
∗J

(
cosh

h

2

)−1

aξ

)
=

(
exp

(
h

2

)(
cosh

h

2

)−1

x′ω exp

(
−h

2

)(
cosh

h

2

)−1

aξ, bξ

)
,

we have(
cosh

h

2

)−1

JxJ

(
cosh

h

2

)−1

=
1

2
exp

(
ω

2

)
exp

(
−h

2

)(
cosh

h

2

)−1

x′ω exp

(
h

2

)(
cosh

h

2

)−1

+
1

2
exp

(
−ω

2

)
exp

(
h

2

)(
cosh

h

2

)−1

x′ω exp

(
−h

2

)(
cosh

h

2

)−1

.

Therefore, we have

(JxJζ1, ζ2) =
1

2
exp

(
ω

2

)(
x′ω exp

(
h

2

)
ζ1, exp

(
−h

2

)
ζ2

)
+

1

2
exp

(
−ω

2

)(
x′ω exp

(
−h

2

)
ζ1, exp

(
h

2

)
ζ2

)
.
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1.4 Complex analysis - interlude

Theorem 1.1
Suppose that f is a bounded continuous function of{

z ∈ C : |Im z| ≤ 1

2

}
into the complex plane which is holomorphic on{

z ∈ C : |Im z| < 1

2

}
.

Then we have

f(0) =

∫ ∞
−∞

eθt
(

1

2
exp

(
− iθ

2

)
f

(
t− i

2

)
+

1

2
exp

(
iθ

2

)
f

(
t+

i

2

))
dt

cosh(πt)

for each −π < θ < π.

Proof. We define U =

{
z ∈ C : |Im z| < 1

2

}
and

ϕ(z) =
πeθzf(z)

sinh(πz)
.

Then the function ϕ is holomorphic on { z ∈ C : |Im z| < 1 } \ {0} and we have

f(0) = lim
z→0

zϕ(z) =
1

2πi

(∫ r

−r

(
ϕ

(
t− i

2

)
− ϕ

(
t+

i

2

))
dt

+ i

∫ 2−1

−2−1

(
ϕ(r + it)− ϕ(−r + it)

)
dt

)
for each r > 0. We define

‖f‖ = sup
|Im z|≤2−1

|f(z)|.

Then we have∣∣∣∫ 2−1

−2−1

(
ϕ(r + it)− ϕ(−r + it)

)
dt
∣∣∣ ≤ 2πe(θ−π)r‖f‖

1− e−2πr
+

2πe(−θ−π)r‖f‖
1− e−2πr

→ 0.

Therefore, we have

f(0) =

∫ ∞
−∞

eθt
(

1

2
exp

(
− iθ

2

)
f

(
t− i

2

)
+

1

2
exp

(
iθ

2

)
f

(
t+

i

2

))
dt

cosh(πt)
.
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Suppose that x is a self-adjoint operator on a Hilbert space H and let

x =

∫ ∞
−∞

xP (dx)

be a spectral decomposition.

Proposition 1.6
dom eikx = dom e−(Im k)x for each complex number k.

Proof.

dom eikx =

{
ξ :

∫ ∞
−∞
|eikx|2Pξ(dx) <∞

}
=

{
ξ :

∫ ∞
−∞
|e−(Im k)x|2Pξ(dx) <∞

}
= dom e−(Im k)x.

Remark 1.3
dom eikx = H for each real number k.

Proposition 1.7
dom eik2x is a subset of dom eik1x for each complex numbers k1 and k2 such that
0 ≤ Im k1 ≤ Im k2.

Proof. ∫ ∞
−∞
|e−(Im k1)x|2Pξ(dx) ≤

∫ ∞
−∞

(
1 + e−(Im k2)x

)2
Pξ(dx).

Proposition 1.8
Suppose that k− and k+ are complex numbers such that

Im k− < Im k+.

Suppose that ξ is an element of dom eik−x ∩ dom eik+x. Then the mapping

k 7→ eikxξ

is holomorphic on Im k− < Im k < Im k+ and bounded continuous on Im k− ≤
Im k ≤ Im k+.

Proof. We first prove that the mapping is bounded continuous on the stripe.

‖eikxξ‖2 =

∫ ∞
−∞
|eikx|2Pξ(dx)

≤
∫ ∞
−∞

(
e−(Im k−)x + e−(Im k+)x

)2
Pξ(dx) <∞.
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Since

|eik
′x − eikx|2 ≤

(
|eik

′x|+ |eikx|
)2

=
(
e−(Im k′)x + e−(Im k)x

)2
≤ 4
(
e−(Im k−)x + e−(Im k+)x

)2
,

we have

lim
k′→k
‖eik

′xξ − eikxξ‖2 = lim
k′→k

∫ ∞
−∞
|eik

′x − eikx|2Pξ(dx) = 0.

Suppose that η is any element of H. Then we have

(eikxξ, η) =

∫ ∞
−∞

eikxPξ,η(dx).

We have

|∂e
ikx

∂k
| = |ixeikx|

= |x|e−(Im k)x

≤ |x|(e−m−x + e−m+x)

for Im k− < m− ≤ Im k ≤ m+ < Im k+ and we have∫ ∞
−∞
|x|e−mx|Pξ,η|(dx) ≤

(∫ ∞
−∞
|x|2e−2mxPξ(dx)

)1/2

‖η‖

for Im k− < m < Im k+. Since

lim
|x|→∞

|x|e−mx

e−(Im k−)x + e−(Im k+)x
= 0,

we have ∫ ∞
−∞
|x|2e−2mxPξ(dx) <∞

and we have ∫ ∞
−∞
|x|(e−m−x + e−m+x)|Pξ,η|(dx) <∞.

Suppose that a is a bounded operator on H and let x0 be a real number.
Then the bounded operator

f(x0) =

∫ ∞
−∞

eikx0e−ikxaeikx
dk

cosh(πk)

is Gelfand-Pettis integrable with respect to the σ-weak topology. Suppose that
ξ and η are elements of

dom exp

(
x

2

)
∩ dom exp

(
−x

2

)
.
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Then the function
k 7→ eikx0(aeikxξ, eik̄xη)

is holomorphic on |Im k| < 2−1 and bounded continuous on |Im k| ≤ 2−1. By
Theorem 1.1, we have

(aξ, η) =
1

2
exp

(
x0

2

)(
f(x0) exp

(
x

2

)
ξ, exp

(
−x

2

)
η

)
+

1

2
exp

(
−x0

2

)(
f(x0) exp

(
−x

2

)
ξ, exp

(
x

2

)
η

)
.

Suppose that b is any bounded operator on H such that

(aξ, η) =
1

2
exp

(
x0

2

)(
b exp

(
x

2

)
ξ, exp

(
−x

2

)
η

)
+

1

2
exp

(
−x0

2

)(
b exp

(
−x

2

)
ξ, exp

(
x

2

)
η

)
for each elements ξ and η of

dom exp

(
x

2

)
∩ dom exp

(
−x

2

)
= dom

(∫ ∞
−∞

(
exp

(
x

2

)
+ exp

(
−x

2

))
P (dx)

)
.

Then the function
k 7→ eikx0(beikxξ, eik̄xη)

is holomorphic on |Im k| < 2−1 and bounded continuous on |Im k| ≤ 2−1. We
have

(bξ, η) =

∫ ∞
−∞

eikx0(aeikxξ, eikxη)
dk

cosh(πk)
=
(
f(x0)ξ, η

)
by Theorem 1.1. Then we have

b =

∫ ∞
−∞

eikx0e−ikxaeikx
dk

cosh(πk)
= f(x0).

1.5 Tomita’s theorem for a cyclic and separating vector

According to Section 1.4, we have

x′ω =

∫ ∞
−∞

eiωte−ihtJxJeiht
dt

cosh(πt)
.

Proposition 1.9
e−ihtJNJeiht is a subset of N ′.

Proof. Suppose that y is any element of N . Then we have

0 =

∫ ∞
−∞

eiωt[e−ihtJxJeiht, y]
dt

cosh(πt)
.
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We have
[e−ihtJxJeiht, y] = 0

by the uniqueness theorem of Fourier transforms.

We have the following theorem by the relation F = S∗.

Theorem 1.2 (Tomita’s theorem for a cyclic and separating vector)

JNJ = N ′

and

eihtNe−iht = N, eihtN ′e−iht = N ′

for each real number t.

2 Hilbert Algebras

2.1 Locally compact groups

Suppose that ∆ is the modular function on a locally compact group G.
There exists a unique Radon measure up to multiplication by a positive

constant such that

dµ(g) =
√

∆(g) dg, dν(g) =
1√

∆(g)
dg =

√
∆(g−1) dg

are a left Haar measure and a right Haar measure, respectively.

Remark 2.1
µ(S−1) = ν(S) for any Borel set S.

We define |S| to be the measure of a Borel set S. Then we have

|S| =
∫
S

√
∆(g−1) dµ(g)

=

∫
S−1

√
∆(g) dν(g) = |S−1|

for any Borel set S.
Suppose that ξ and η are elements of CC(G). Then the support of the

continuous function

(g, h) 7→ ζ(g, h) = ξ(h)η(h−1g)

is a subset of (supp ξ)(supp η)× supp ξ and the function

g 7→ (ξ ∗ η)(g) =

∫
ζ(g, h) dµ(h)

=

∫
ξ(h)η(h−1g) dµ(h)
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is an element of CC(G). We have

(ξ ∗ η)(g) =

∫
ξ(h−1)η(hg) dν(h)

=

∫
ξ(gh−1)η(h) dν(h).

Proposition 2.1
CC(G) is a complex algebra.

Proof. The mapping
(ξ, η) 7→ ξ ∗ η (1)

is bilinear and we proceed to show that (1) is associative. We have

(
(ξ ∗ η) ∗ ζ

)
(g) =

∫
(ξ ∗ η)(h)ζ(h−1g) dµ(h)

=

∫
ξ(h1)η(h−1

1 h2)ζ(h−1
2 g) d(µ× µ)(h1, h2).

Since ∫
η(h−1

1 h2)ζ(h−1
2 g) dµ(h2) =

∫
η(h2)ζ(h−1

2 h−1
1 g) dµ(h2)

= (η ∗ ζ)(h−1
1 g),

we have(
(ξ ∗ η) ∗ ζ

)
(g) =

∫
ξ(h)(η ∗ ζ)(h−1g) dµ(h) =

(
ξ ∗ (η ∗ ζ)

)
(g).

We define a conjugate linear isometry J on L2(G) by

(Jξ)(g) = ξ(g−1)

and we define a closed operator S on L2(G) by

S = J
√

∆.

Then we have
S =

√
∆
−1
J = S−1.

Since
domS = L2

((
1 + ∆(g)

)
dg
)
,

the algebra CC(G) is an invariant core for S.
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Suppose that ξ and η are elements of CC(G). Then we have

J(ξ ∗ η)(g) = (ξ ∗ η)(g−1)

=

∫
ξ(h)η(h−1g−1) dµ(h)

=

∫
ξ(g−1h)η(h−1) dµ(h)

=

∫
(Jξ)(h−1g)(Jη)(h) dµ(h)

=
(
(Jη) ∗ (Jξ)

)
(g)

and we have J(ξ ∗ η) = (Jη) ∗ (Jξ).

Proposition 2.2
S is an involution on CC(G).

Proof.

S(ξ ∗ η)(g) =
√

∆(g−1)

∫
(Jη)(h)(Jξ)(h−1g) dµ(h)

=

∫
(Sη)(h)(Sξ)(h−1g) dµ(h)

=
(
(Sη) ∗ (Sξ)

)
(g).

Suppose that ξ and η are elements of CC(G). Then we have

‖ξ ∗ η‖22 =

∫ ∣∣∫ ξ(h)η(h−1g) dµ(h)
∣∣2 dg

≤
∫
|ξ(h1)||ξ(h2)|

∫
|η(h−1

1 g)||η(h−1
2 g)| dg d(µ× µ)(h1, h2).

Since ∫
|η(h−1g)|2 dg =

∫
|η(h−1g)|2

√
∆(g−1) dµ(g)

=

∫
|η(g)|2

√
∆(h−1) dg

=
‖η‖22√
∆(h)

,

we have

‖ξ ∗ η‖2 ≤
∫
|ξ(h)| ‖η‖2

4
√

∆(h)
dµ(h)

= ‖ 4
√

∆ξ‖1‖η‖2.
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Proposition 2.3
The mapping

η 7→ π(ξ)η = ξ ∗ η
is bounded on CC(G) and we have ‖π(ξ)‖ ≤ ‖ 4

√
∆ξ‖1.

Suppose that K is a compact neighborhood of e. Then there exists an
element ξK of C+

C (G) such that supp ξK is a subset of K and∫
ξK(g) dµ(g) = 1.

The set of compact neighborhoods of e is a directed set by reverse inclusion.
Suppose that η is any element of CC(G). Then we have

|(ξK ∗ η − η)(g)| =
∣∣∫ ξK(h)

(
η(h−1g)− η(g)

)
dµ(h)

∣∣
≤
∫
ξK(h)|η(h−1g)− η(g)| dµ(h).

There exists a compact and symmetric neighborhood Kε of e such that

max
g∈G
|η(h−1g)− η(g)| < ε

provided that h is an element of Kε. The net (ξK ∗η)K converges to η uniformly
and we have limK‖ξK ∗ η − η‖2 = 0.

Theorem 2.1
CC(G) is a Hilbert algebra.

Proof.

(ξ ∗ η, ζ) =

∫
(ξ ∗ η)(g)ζ(g) dg

=

∫
ξ(h)η(h−1g)

√
∆(g−1) d(µ× µ)(g, h)

=

∫
ξ(h)η(g)ζ(hg) d(g, h).

(
η, (Sξ) ∗ ζ

)
=

∫
η(g)

∫
(Sξ)(h)ζ(h−1g) dµ(h) dg

=

∫
η(g)

∫
(Sξ)(h−1)ζ(hg) dν(h) dg

=

∫
η(g)

∫
ξ(h)ζ(hg) dh dg

=

∫
ξ(h)η(g)ζ(hg) d(g, h).
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