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1 Tomita’s Theorem - Shortest Course

1.1 Closed operators associated with the cyclic and sepa-
rating vector

Suppose that N is a von Neumann algebra on a Hilbert space H and £ is a
cyclic and separating vector for N.
We define a conjugate linear operator Sy on N¢ by

Sox€ = x*E.
Then we have Sy = S ! Similarly, we define an operator Fy on N'¢ by
Fox'¢ = ™€,
Suppose that (z,2’) is any element of N x N’. Then we have
(2'€, Soag) = (2, 27E) = (v€,2¢) = (a§, Foa').

Therefore, the operators Sy and Fy are closable. We define S = Sy and F = Fy.
Then the operator F is extended by S™*.

LEMMA 1.1

Suppose that Sp = Sy 1 is a conjugate linear closable operator on a Hilbert
space H and let S = Sy. Then we have S = S~! and §* = 5*~ L.



Proof. Tt is sufficient to show that S* = S*~! because if we show S; = S* =
Sl = S(’)k*l, then we have S = §** = §**~1 = §=1 Suppose that £ is an
element of dom Sy and 7 is an element of dom S*. Then we have (S*7, Spf) =
(&,m). Therefore, the vector S*n belongs to dom S* and S*S*n = 7. O

Therefore, we have S = S~! and §* = §*~ 1.

ProrosiTION 1.1
Suppose that 7 is an element of dom S*. Then the operator

€ — 1, N¢— H

is closable. We write x% for its closure. Then the operator x% is affiliated with
N’ and the operator 7%., is extended by ;"

Proof. We define an operator ag of N¢ into H by agzé = zn. Similarly, we
define an operator by of N¢ into H by bpxé = xS*n. Then for each z, y € N,
we have

Therefore, the operators ag and by are closable and the operator xg*n = by is

extended by x;]* = aj. Suppose that x is an element of N and ¢ is an element
of domz7,. Then there exists a sequence (z,,);2; of N such that

(Ea ‘Tili) = nlingo(znfa Tp1).-
Then we have
za, € = nlgréo TTM = nlgr;o zhxené = x, Tk
Therefore, the operator z;, is affiliated with N'. O

Suppose that 1 is an element of dom S* and let 2z’ = w% Suppose that
x’ = v'|2’| is a polar decomposition and

2| = / sP'(ds)
0
is a spectral decomposition. We define P, = P’([0,n]) and

2, =12'P = v'/ sP'(ds) € N'.
0



Then we have

I a1l =l - o' Prg
S EEAS
— [ #IPasgp o
n,00)

)

and
15%n — apél|? = |l |v™*€ — || PLo"™ ||

:/ 2P (ds)o€|1* = 0.
(n,00)
Therefore, the vector 1 belongs to dom F' and we have F' = S*. We define

Cc(0,00)4 = { f:[0,00) = [0,00) : f is continuous

and supp f is contained in (0, 00) }

PRrROPOSITION 1.2
Suppose that n is an element of dom S*. Then the vector f(x;]x;]*)n belongs
to dom S* and we have S*f(z, 2" )n = f(x; x])S™n for each element f of

n
Cc(0,00) 4.

Proof. There exists an element g of Cc(0,00)4 such that f(x) = zg(x) for
x > 0. Suppose that x is an element of V. Then we have

x€, f (@) @) S ).

Therefore, the vector f(z;z;")n belongs to dom S* and we have S* f(z}x,")n =

[y a,)S*n. O

ProPOSITION 1.3

N’ = {a; :nis an element of dom S* such that x; is bounded }.

Proof. Suppose that 2’ is an element of N'. We define an element n = 2’¢ of
dom S*. Suppose that z is an element of N. Then we have z; x{ = z2'§ = 2'x¢.
Therefore, the operator z; is bounded and z’ = ;. O



1.2 Polar decomposition - interlude

Suppose that S = S~! is a conjugate linear closed operator on a Hilbert space
H and let S = J|S| be the polar decomposition.

Then ker J = ker S = {0} and the operator J is a conjugate linear isometry.
Since the operator |S|? is injective and positive, we can define a self-adjoint
operator h = —log|S|?. Then we have

h
S = Jexp<—2>.
REMARK 1.1

There exists a unique pair (J, h) of a conjugate linear isometry J and a (possibly
unbounded) self-adjoint operator h such that

h
S = Jexp<2>.

Since ker J* = ker S* = {0}, we have J* = J~!. Since |S*|?> = SS* =

(S*S)~! = |S|72, we have
. h
|S*| = exp<2>.
Therefore, we have

J* exp(Z) =S5*=6"1= Jexp(Z)

and we have J = J*.

REMARK 1.2
The relation J = J* = J~! holds and

h h h h
seree(3)=eal()r 5= ven(3) —en(5)

1.3 Key propositions

LEMMA 1.2
Suppose that p is a Borel measure on [0, 00) and g > 0 such that

/O 2 f(x)p(dr) < o2 / f(@)u(de)

for each element f of Cc(0,00)+. Then we have p((xg,00)) = 0.

Proof. Suppose that [a,b] is any subinterval of (zg,00). Then there exists an
element f of C(0,00)4 such that

1
f(m)zm



for a < < b. Then we have

b
plla,t) = [ (* - ai)f(@)n(da) <.

Therefore, we have p((xg,00)) = 0. O

PRrROPOSITION 1.4
Suppose that z is an element of N and w is a real number. Then there exists a
unique element 2/, of N’ such that
w\ !
) =l

h
J (cosh

and we have |2l || < ||z]|.

Proof. We define

—1
n= J(coshh w> z€ € dom S Ndom S*

and let 2" = z. Suppose that 2’ = v'|z’| is a polar decomposition and

el * /
|z = sP'(ds)
0

is a spectral decomposition. By Proposition 1.3, it is sufficient to show that
lz'|| < |lz||. Suppose that f is any element of C(0,00)4. Since

h+w 1 w 1 WY os
r§ = <COSh 9 >J77 2€Xp<2>577+265<p<2)5 n,

we have

11T (" e
> are(Jo' T Dz exn (5 ) Sl IV D g exn -5 ) 570)
= Re (S, [2'*f(]2/[)S"n).
Therefore, we have

2|/ F (12 €l* = Re(Sn, |22 £(|2"1)S™n)
= Re(|2"[*f (|2 [)n,n)
= [l [v/F (2" )],



2" [v/F (2" Dnll? < N’/ F (']
< el e’V F (12" Del?
= Jll® I/ F ("Dl €]
= Jll® I/ F (2’ o]
< eIV F (2™ Dl
/g s*f(s)||P' (ds)n]|* < HwHZ./g F) P (ds)nl|*.

By Lemma 1.2, we have P’((||x]|,00))n = 0. We define P’ = P’([0, ||z||]). Then
we have n = P’'n. Suppose that y is any element of N. Then we have

a'y€ = yn
= P'yn
= P'a"y¢
[l]|
= / sP'(ds)v'y€.
0

Therefore, we have ||z’|| < ||z|. O

PRrROPOSITION 1.5
Suppose that (; and (5 are elements of

dom exp <h> N dom exp (—h> .
2 2
Then we have

1= h(2) (B )
+ % exp (—;) <xi, exp (-Z) C1,exp (Z) Cz) ~

Proof. Suppose that a and b are any elements of N. By Proposition 1.4, there
exist elements a’ and o’ of N’ such that

-1 —1
J(COSh ;L> aé = d¢, J(cosh Z) bé = V€.

We have . .
_ 1t w / 1 C W o
xf—2exp<2>5zw§+26xp( 2>S €.



Since

(a"V'E x8) = (V'€ xd'S)

-1 —1

= (J <cosh ;L) b¢, xJ<cosh Z) af)
—1 -1

= (<cosh Z) JxJ <cosh Z) aé, b§> ,

g b/*alf)
S* /*S*b/é- aé—)

-1 B -l
(S* St J (cosh ) b§,J<cosh2> af)

-1 -1
( ( )(cosh ) x&exp(Z)(coshZ) af,bf)

(a"V'¢, 5"2,€) = ('€, a'S"x,8)
= (V'¢, §"a,87dS)

B ! B L
= (J (cosh 2) be, S*x&S*J(cosh 2) a§>
h A h A
<exp<2> <cosh 2) x,, exp(—2> (cosh 2) af,bﬁ),
we have

R\ ! p\ !
(cosh2> JxJ(coshQ)
_1 X g X _ﬁ hﬁ - ! X ﬁ hﬁ -1
= 5exp( 5 Jexp| =5 || cosh g T, exp| 5 || cosh 3
RN YA S A AV A
5 exp 2 exp 2 Cos 5 T, exp 5 Cos 5 .
Therefore, we have
1 w h h
e - o) (oo £)c)
1 W\ (. h h
+ 5 eXP (—2> (xw exp (—2>(1,exp<2>§2>, O

(a™V's, Sx;é)

/\/\



1.4 Complex analysis - interlude

THEOREM 1.1
Suppose that f is a bounded continuous function of

{zGC:|Imz|§;}

into the complex plane which is holomorphic on

1
{ze(C:|Imz<2}.
Then we have

0= (o)) () )

for each —m < 0 < 7.

1
Proof. We define U = {z eC:|Imz| < 3 } and

me’* f(2)

sinh(7z)

p(z) =

Then the function ¢ is holomorphic on {z € C: [Imz| < 1} \ {0} and we have

0=t~ ([ (o) ()

+i /21 (o(r+it) — p(—r +it)) dt)

—9-1

for each » > 0. We define

Ifll= sup |f(2)].

[Im z|<2-1
Then we have

o1 0—m)r —60—m)r
: , 2re®= | || 2me0mmr| £
‘/7271 (gp(r +it) —o(—r+ zt)) dt’ < = + e — 0.

Therefore, we have

0= [l 2)e-2) () )

O



Suppose that x is a self-adjoint operator on a Hilbert space H and let

z= / ~ oP(dx)

—00
be a spectral decomposition.

PRrROPOSITION 1.6
dom e’** = dom e~ #)? for each complex number k.

Proof.
dom e'*® = {5 : / ™2 P (dx) < oo}
= {g : / le~ImP)z)12 p, (dz) < oo}
= dom ¢~ (Imk)z O
REMARK 1.3

dom e** = H for each real number k.

ProposITION 1.7
dom e**27 is a subset of dom e?*1* for each complex numbers k; and ks such that

Proof.

/ Ie—(Imkl)z|2P§(dx) S/ (1+€*(Imk2)w)2P§(dx)' O

— 00 — 00

PROPOSITION 1.8
Suppose that k_ and k4 are complex numbers such that

Imk_ <Imk,.
Suppose that £ is an element of dom e**~® N dom e**+*. Then the mapping
ko e*re

is holomorphic on Imk_ < Imk < Imk,; and bounded continuous on Imk_ <
Imk <Imk,.

Proof. We first prove that the mapping is bounded continuous on the stripe.
(o]
el = [ Jet ()
— 00

< / (ef(Imk‘)x + ef(Imk+)I)2P5(dx) < 0.



Since

eik'z 7 eikz|2 ( ik’ :r| + |€zkm|)
( —(Im k' )z (Imk)m)Q
§4( —(Imk_ )x+€—(1111k+)x) ,
we have
oo
kl/iglk”eik’rg _ 1km§H2 hmk |eik’m _ 1km|2 (d$)
—o0

Suppose that 7 is any element of H. Then we have

(eikx& 77) — / eikxpg’n(dw).

— 00
We have
8 ikx )
|| = liwe™|
|$‘€ (Imk)z

< fal(e™m* 4+ e
forImk_ <m_ <Imk <m4 <Imk; and we have

e’} oo 1/2
[t ip i < ([ jape e ran)

— 00

for Imk_ < m < Imk,. Since

b e,amk,'i!i ot~ O
we have -
/ |z|2e™ 2™ Pe(dx) < oo
and we have -
lz|(e™™=" 4 7)) | Pe | (dx) < co. O

Suppose that a is a bounded operator on H and let zy be a real number.
Then the bounded operator

R . . dk
— ikxo —ikx ke YV
/(o) [m oo e cosh(7k)

is Gelfand-Pettis integrable with respect to the o-weak topology. Suppose that
& and 7 are elements of

dom exp (2) N dom exp (—ﬁ) .

10



Then the function 4 . -
ko ezkaco (CLeﬂmf, ezkxn)

is holomorphic on [Imk| < 27! and bounded continuous on [Imk| < 27!, By
Theorem 1.1, we have

st~ oo 22) (o5 e (-2}
Lenn(~2) (s~ e (2)).

Suppose that b is any bounded operator on H such that

(ag,m) = % exp (?) (b exp (;) £, exp (—;) 77)

1 To x T
+ 3 exp <2> (bexp<2>§,exp<2>n>
for each elements £ and 7 of

domexp(g) n domexp<—§> — dom (/_O:O <exp<§> +exp (—;C))P(dx)).

Then the function 4 . -
ko elkwo (be“”'f, ezka:n)

is holomorphic on |Im k| < 27! and bounded continuous on [Imk| < 271. We
have

g ; ; dk
e = [ et et s = ()

by Theorem 1.1. Then we have

R . . dk
b= ikxo ,—ikx  _ikx _ )
/ oo e cosh(rk) f (o)

— 00

1.5 Tomita’s theorem for a cyclic and separating vector
According to Section 1.4, we have
< - ; dt
m:u :/ ezwte—zhtjxjezht )
cosh(mt)

— 00

ProposITION 1.9
et TN Jeilt is a subset of N'.

Proof. Suppose that y is any element of N. Then we have

0= /00 eiwt[e—ihthJeiht } dt
B Y cosh(mt)’

— 00

11



We have 4 '
[e= M JxJe™ y] = 0

by the uniqueness theorem of Fourier transforms. O

We have the following theorem by the relation F' = S*.

THEOREM 1.2 (Tomita’s theorem for a cyclic and separating vector)

JNJ =N’
and
eihtNe—i’Lt — ]\]7 eihtN/e—iht — N/

for each real number t.

2 Hilbert Algebras

2.1 Locally compact groups

Suppose that A is the modular function on a locally compact group G.
There exists a unique Radon measure up to multiplication by a positive
constant such that

9) = VA(g) dg, dv(g) = @ dg = /A(g-1)dg

are a left Haar measure and a right Haar measure, respectively.

REMARK 2.1
pu(S™1) = v(S) for any Borel set S.

We define |S| to be the measure of a Borel set S. Then we have
S1= [ VAT duta)
= VA(g)dv(g) =571

S—1

for any Borel set S.
Suppose that £ and n are elements of Co(G). Then the support of the
continuous function

(9.1) = (g, h) = E(m(h™"g)
is a subset of (supp &)(suppn) x supp & and the function

= (§xn)(g /697 ) du(h



is an element of C'c(G). We have

(€xm)(g /5 n(hg) du(h)

ProroSITION 2.1

Cc(G) is a complex algebra.

Proof. The mapping
(&m) = &xn (1)
is bilinear and we proceed to show that (1) is associative. We have
(€ xm) +€)o) = [(€xmmc(hg) du(h)
= /ﬁ(hl)n(hflhz)C(hglg) d(p x p)(ha, ha).

Since

[ 00 ey ) dutha) = [ niha)(h i) d(ha)
= (n*Q)(hi'g),
we have
(€1 * )(9) = [ €+ O~ g) duh) = (€ (n Q) ().
We define a conjugate linear isometry J on L?(G) by
(JE)(9) =&(g71)
and we define a closed operator S on L?(G) by

S = JVA.

Then we have

S=vA 'J=5"1

Since

dom S = LQ((l +A(g)) dg),

the algebra Co(G) is an invariant core for S.

13



Suppose that £ and 7 are elements of Co(G). Then we have

J(Exn)(g) = (Exn)(g~ )

— [ emnrg7) duihy
=/€g‘1hnh‘ du(h)

- / () (h~ ) () () dp(h)
— ((Jn) * (JO)(9)
and we have J(& xn) = (Jn) = (JE).

PROPOSITION 2.2
S is an involution on C¢(G).

Proof.
S+ (o) = VAT [T g) duh

- / (Sn)(R)(SE)(h~1g) dpu(h)
— ((Sn) * (59)) (9).

Suppose that £ and 7 are elements of Cc(G). Then we have

IIS*nllz—/|/§ n(h~'g) du(h)|* dg

< [lewoligth] [ o 9linths 9l dg e x )t o).

Since
/In(h‘lg)Ing = /In(h‘lg)IQ\/A(g‘l)du(g)
~ [P VAT dg
i
A(h)’
we have

€ *mllz < / &(h ”"”2 A
— | V/Ae], HT}IIz.

14



PROPOSITION 2.3
The mapping
n—m(§n=¢Exn
is bounded on C(G) and we have ||7(€)|| < ||[VAE]:.

Suppose that K is a compact neighborhood of e. Then there exists an
element £ of Cf(G) such that supp £k is a subset of K and

/éK(g) du(g) = 1.

The set of compact neighborhoods of e is a directed set by reverse inclusion.
Suppose that 7 is any element of Co(G). Then we have

(Ex * 0 —m)(g)] = | / £xc () (n(h™1g) — n(g)) du(h)|
< / Exc (W) n(h=g) — 1(g)| dys(h).

There exists a compact and symmetric neighborhood K. of e such that
htlg) — <
max|n(h™"g) —n(g)l <e

provided that h is an element of K. The net (x *n)x converges to n uniformly
and we have limg ||€x * 1 — 1|2 = 0.

THEOREM 2.1
Cc(G) is a Hilbert algebra.

Proof.
(£*n74)=/(§*n)(g)@dg
- / e g)v/Blg 1) d(t x 1)(g, h)
- / £(h)yn(o)CChg) d(g, h).
(. (5€) % C) = / n(g) / () (h)C(h~"g) du(h) dg
- / n(g) / (S€)(h=1)¢ (hg) dv(h) dg
- / n(g) [ €()CThg) dhdg
— / £(h)1(a)CChg) d(g, h). 0
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