Tomita's Theorem

Yasushi Ikeda

September 8, 2022

Contents

1 Tomita's Theorem - Shortest Course 1
1.1 Closed operators associated with the cyclic and separating vector 1
1.2 Polar decomposition - interlude 4
1.3 Key propositions 4
1.4 Complex analysis - interlude 8
1.5 Tomita's theorem for a cyclic and separating vector 11
2 Hilbert Algebras 12
2.1 Locally compact groups 12

1 Tomita's Theorem - Shortest Course

1.1 Closed operators associated with the cyclic and separating vector

Suppose that N is a von Neumann algebra on a Hilbert space H and ξ is a cyclic and separating vector for N.

We define a conjugate linear operator S_{0} on $N \xi$ by

$$
S_{0} x \xi=x^{*} \xi
$$

Then we have $S_{0}=S_{0}^{-1}$. Similarly, we define an operator F_{0} on $N^{\prime} \xi$ by

$$
F_{0} x^{\prime} \xi=x^{\prime *} \xi
$$

Suppose that $\left(x, x^{\prime}\right)$ is any element of $N \times N^{\prime}$. Then we have

$$
\left(x^{\prime} \xi, S_{0} x \xi\right)=\left(x^{\prime} \xi, x^{*} \xi\right)=\left(x \xi, x^{\prime *} \xi\right)=\left(x \xi, F_{0} x^{\prime} \xi\right) .
$$

Therefore, the operators S_{0} and F_{0} are closable. We define $S=\overline{S_{0}}$ and $F=\overline{F_{0}}$. Then the operator F is extended by S^{*}.

Lemma 1.1
Suppose that $S_{0}=S_{0}^{-1}$ is a conjugate linear closable operator on a Hilbert space H and let $S=\overline{S_{0}}$. Then we have $S=S^{-1}$ and $S^{*}=S^{*-1}$.

Proof. It is sufficient to show that $S^{*}=S^{*-1}$ because if we show $S_{0}^{*}=S^{*}=$ $S^{*-1}=S_{0}^{*-1}$, then we have $S=S^{* *}=S^{* *-1}=S^{-1}$. Suppose that ξ is an element of $\operatorname{dom} S_{0}$ and η is an element of $\operatorname{dom} S^{*}$. Then we have $\left(S^{*} \eta, S_{0} \xi\right)=$ (ξ, η). Therefore, the vector $S^{*} \eta$ belongs to dom S^{*} and $S^{*} S^{*} \eta=\eta$.

Therefore, we have $S=S^{-1}$ and $S^{*}=S^{*-1}$.

Proposition 1.1

Suppose that η is an element of $\operatorname{dom} S^{*}$. Then the operator

$$
x \xi \mapsto x \eta, \quad N \xi \rightarrow H
$$

is closable. We write x_{η}^{\prime} for its closure. Then the operator x_{η}^{\prime} is affiliated with N^{\prime} and the operator $x_{S^{*} \eta}^{\prime}$ is extended by $x_{\eta}^{\prime *}$.

Proof. We define an operator a_{0} of $N \xi$ into H by $a_{0} x \xi=x \eta$. Similarly, we define an operator b_{0} of $N \xi$ into H by $b_{0} x \xi=x S^{*} \eta$. Then for each $x, y \in N$, we have

$$
\begin{aligned}
\left(a_{0} x \xi, y \xi\right) & =\left(\eta, x^{*} y \xi\right) \\
& =\left(\eta, S y^{*} x \xi\right) \\
& =\left(y^{*} x \xi, S^{*} \eta\right) \\
& =\left(x \xi, y S^{*} \eta\right) \\
& =\left(x \xi, b_{0} y \xi\right) .
\end{aligned}
$$

Therefore, the operators a_{0} and b_{0} are closable and the operator $x_{S^{*} \eta}^{\prime}=\overline{b_{0}}$ is extended by $x_{\eta}^{\prime *}=a_{0}^{*}$. Suppose that x is an element of N and $\bar{\xi}$ is an element of $\operatorname{dom} x_{\eta}^{\prime}$. Then there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of N such that

$$
\left(\bar{\xi}, x_{\eta}^{\prime} \bar{\xi}\right)=\lim _{n \rightarrow \infty}\left(x_{n} \xi, x_{n} \eta\right) .
$$

Then we have

$$
x x_{\eta}^{\prime} \bar{\xi}=\lim _{n \rightarrow \infty} x x_{n} \eta=\lim _{n \rightarrow \infty} x_{\eta}^{\prime} x x_{n} \xi=x_{\eta}^{\prime} x \bar{\xi}
$$

Therefore, the operator x_{η}^{\prime} is affiliated with N^{\prime}.
Suppose that η is an element of $\operatorname{dom} S^{*}$ and let $x^{\prime}=x_{\eta}^{\prime}$. Suppose that $x^{\prime}=v^{\prime}\left|x^{\prime}\right|$ is a polar decomposition and

$$
\left|x^{\prime}\right|=\int_{0}^{\infty} s P^{\prime}(d s)
$$

is a spectral decomposition. We define $P_{n}^{\prime}=P^{\prime}([0, n])$ and

$$
x_{n}^{\prime}=x^{\prime} P_{n}^{\prime}=v^{\prime} \int_{0}^{n} s P^{\prime}(d s) \in N^{\prime}
$$

Then we have

$$
\begin{aligned}
\left\|\eta-x_{n}^{\prime} \xi\right\|^{2} & =\left\|x^{\prime} \xi-x^{\prime} P_{n}^{\prime} \xi\right\|^{2} \\
& \leq\left\|\left(\left|x^{\prime}\right|-\left|x^{\prime}\right| P_{n}^{\prime}\right) \xi\right\|^{2} \\
& =\int_{(n, \infty)} s^{2}\left\|P^{\prime}(d s) \xi\right\|^{2} \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|S^{*} \eta-x_{n}^{\prime *} \xi\right\|^{2} & =\left\|\left|x^{\prime}\right| v^{\prime *} \xi-\left|x^{\prime}\right| P_{n}^{\prime} v^{\prime *} \xi\right\|^{2} \\
& =\int_{(n, \infty)} s^{2}\left\|P^{\prime}(d s) v^{\prime *} \xi\right\|^{2} \rightarrow 0
\end{aligned}
$$

Therefore, the vector η belongs to $\operatorname{dom} F$ and we have $F=S^{*}$. We define

$$
\begin{aligned}
C_{C}(0, \infty)_{+}=\{f:[0, \infty) \rightarrow[0, \infty): f & \text { is continuous } \\
& \quad \text { and supp } f \text { is contained in }(0, \infty)\} .
\end{aligned}
$$

Proposition 1.2

Suppose that η is an element of $\operatorname{dom} S^{*}$. Then the vector $f\left(x_{\eta}^{\prime} x_{\eta}^{*}\right) \eta$ belongs to $\operatorname{dom} S^{*}$ and we have $S^{*} f\left(x_{\eta}^{\prime} x_{\eta}^{\prime *}\right) \eta=f\left(x_{\eta}^{\prime *} x_{\eta}^{\prime}\right) S^{*} \eta$ for each element f of $C_{C}(0, \infty)_{+}$.

Proof. There exists an element g of $C_{C}(0, \infty)_{+}$such that $f(x)=x g(x)$ for $x>0$. Suppose that x is an element of N. Then we have

$$
\begin{aligned}
\left(f\left(x_{\eta}^{\prime} x_{\eta}^{\prime *}\right) \eta, S_{0} x \xi\right) & =\left(x_{\eta}^{\prime *} g\left(x_{\eta}^{\prime} x_{\eta}^{\prime *}\right) \eta, x^{*} S^{*} \eta\right) \\
& =\left(x_{\eta}^{\prime *} g\left(x_{\eta}^{\prime} x_{\eta}^{\prime *}\right) x \eta, S^{*} \eta\right) \\
& =\left(x_{\eta}^{\prime *} g\left(x_{\eta}^{\prime} x_{\eta}^{\prime *}\right) x_{\eta}^{\prime} x \xi, S^{*} \eta\right) \\
& =\left(f\left(x_{\eta}^{\prime *} x_{\eta}^{\prime}\right) x \xi, S^{*} \eta\right) \\
& =\left(x \xi, f\left(x_{\eta}^{\prime *} x_{\eta}^{\prime}\right) S^{*} \eta\right) .
\end{aligned}
$$

Therefore, the vector $f\left(x_{\eta}^{\prime} x_{\eta}^{\prime *}\right) \eta$ belongs to $\operatorname{dom} S^{*}$ and we have $S^{*} f\left(x_{\eta}^{\prime} x_{\eta}^{\prime *}\right) \eta=$ $f\left(x_{\eta}^{\prime *} x_{\eta}^{\prime}\right) S^{*} \eta$.

Proposition 1.3

$$
N^{\prime}=\left\{x_{\eta}^{\prime}: \eta \text { is an element of dom } S^{*} \text { such that } x_{\eta}^{\prime} \text { is bounded }\right\} .
$$

Proof. Suppose that x^{\prime} is an element of N^{\prime}. We define an element $\eta=x^{\prime} \xi$ of $\operatorname{dom} S^{*}$. Suppose that x is an element of N. Then we have $x_{\eta}^{\prime} x \xi=x x^{\prime} \xi=x^{\prime} x \xi$. Therefore, the operator x_{η}^{\prime} is bounded and $x^{\prime}=x_{\eta}^{\prime}$.

1.2 Polar decomposition - interlude

Suppose that $S=S^{-1}$ is a conjugate linear closed operator on a Hilbert space H and let $S=J|S|$ be the polar decomposition.

Then $\operatorname{ker} J=\operatorname{ker} S=\{0\}$ and the operator J is a conjugate linear isometry. Since the operator $|S|^{2}$ is injective and positive, we can define a self-adjoint operator $h=-\log |S|^{2}$. Then we have

$$
S=J \exp \left(-\frac{h}{2}\right)
$$

Remark 1.1

There exists a unique pair (J, h) of a conjugate linear isometry J and a (possibly unbounded) self-adjoint operator h such that

$$
S=J \exp \left(-\frac{h}{2}\right)
$$

Since ker $J^{*}=\operatorname{ker} S^{*}=\{0\}$, we have $J^{*}=J^{-1}$. Since $\left|S^{*}\right|^{2}=S S^{*}=$ $\left(S^{*} S\right)^{-1}=|S|^{-2}$, we have

$$
\left|S^{*}\right|=\exp \left(\frac{h}{2}\right) .
$$

Therefore, we have

$$
J^{*} \exp \left(\frac{h}{2}\right)=S^{*}=S^{*-1}=J \exp \left(\frac{h}{2}\right)
$$

and we have $J=J^{*}$.

REmark 1.2

The relation $J=J^{*}=J^{-1}$ holds and

$$
S=J \exp \left(-\frac{h}{2}\right)=\exp \left(\frac{h}{2}\right) J, \quad S^{*}=J \exp \left(\frac{h}{2}\right)=\exp \left(-\frac{h}{2}\right) J
$$

1.3 Key propositions

Lemma 1.2

Suppose that μ is a Borel measure on $[0, \infty)$ and $x_{0} \geq 0$ such that

$$
\int_{0}^{\infty} x^{2} f(x) \mu(d x) \leq x_{0}^{2} \int_{0}^{\infty} f(x) \mu(d x)
$$

for each element f of $C_{C}(0, \infty)_{+}$. Then we have $\mu\left(\left(x_{0}, \infty\right)\right)=0$.
Proof. Suppose that $[a, b]$ is any subinterval of $\left(x_{0}, \infty\right)$. Then there exists an element f of $C_{C}(0, \infty)_{+}$such that

$$
f(x)=\frac{1}{x^{2}-x_{0}^{2}}
$$

for $a \leq x \leq b$. Then we have

$$
\mu([a, b])=\int_{a}^{b}\left(x^{2}-x_{0}^{2}\right) f(x) \mu(d x) \leq 0 .
$$

Therefore, we have $\mu\left(\left(x_{0}, \infty\right)\right)=0$.

Proposition 1.4

Suppose that x is an element of N and ω is a real number. Then there exists a unique element x_{ω}^{\prime} of N^{\prime} such that

$$
J\left(\cosh \frac{h+\omega}{2}\right)^{-1} x \xi=x_{\omega}^{\prime} \xi
$$

and we have $\left\|x_{\omega}^{\prime}\right\| \leq\|x\|$.
Proof. We define

$$
\eta=J\left(\cosh \frac{h+\omega}{2}\right)^{-1} x \xi \in \operatorname{dom} S \cap \operatorname{dom} S^{*}
$$

and let $x^{\prime}=x_{\eta}^{\prime}$. Suppose that $x^{\prime}=v^{\prime}\left|x^{\prime}\right|$ is a polar decomposition and

$$
\left|x^{\prime *}\right|=\int_{0}^{\infty} s P^{\prime}(d s)
$$

is a spectral decomposition. By Proposition 1.3, it is sufficient to show that $\left\|x^{\prime}\right\| \leq\|x\|$. Suppose that f is any element of $C_{C}(0, \infty)_{+}$. Since

$$
x \xi=\left(\cosh \frac{h+\omega}{2}\right) J \eta=\frac{1}{2} \exp \left(\frac{\omega}{2}\right) S \eta+\frac{1}{2} \exp \left(-\frac{\omega}{2}\right) S^{*} \eta,
$$

we have

$$
\begin{aligned}
& \left\|\left|x^{\prime}\right| \sqrt{f}\left(\left|x^{\prime}\right|\right) x \xi\right\|^{2} \\
& \geq 4 \operatorname{Re}\left(\left|x^{\prime}\right| \sqrt{f}\left(\left|x^{\prime}\right|\right) \frac{1}{2} \exp \left(\frac{\omega}{2}\right) S \eta,\left|x^{\prime}\right| \sqrt{f}\left(\left|x^{\prime}\right|\right) \frac{1}{2} \exp \left(-\frac{\omega}{2}\right) S^{*} \eta\right) \\
& \quad=\operatorname{Re}\left(S \eta,\left|x^{\prime}\right|^{2} f\left(\left|x^{\prime}\right|\right) S^{*} \eta\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left\|\left|x^{\prime}\right| \sqrt{f}\left(\left|x^{\prime}\right|\right) x \xi\right\|^{2} & \geq \operatorname{Re}\left(S \eta,\left|x^{\prime}\right|^{2} f\left(\left|x^{\prime}\right|\right) S^{*} \eta\right) \\
& =\operatorname{Re}\left(\left|x^{* *}\right|^{2} f\left(\left|x^{\prime *}\right|\right) \eta, \eta\right) \\
& =\left\|\left|x^{\prime *}\right| \sqrt{f}\left(\left|x^{\prime *}\right|\right) \eta\right\|^{2},
\end{aligned}
$$

$$
\begin{aligned}
\left\|\left|x^{\prime *}\right| \sqrt{f}\left(\left|x^{\prime *}\right|\right) \eta\right\|^{2} & \leq\left\|\left|x^{\prime}\right| \sqrt{f}\left(\left|x^{\prime}\right|\right) x \xi\right\|^{2} \\
& \leq\|x\|^{2}\left\|\left|x^{\prime}\right| \sqrt{f}\left(\left|x^{\prime}\right|\right) \xi\right\|^{2} \\
& =\|x\|^{2}\left\|\sqrt{f}\left(\left|x^{\prime}\right|\right)\left|x^{\prime}\right| \xi\right\|^{2} \\
& =\|x\|^{2}\left\|\sqrt{f}\left(\left|x^{\prime}\right|\right) v^{\prime *} \eta\right\|^{2} \\
& \leq\|x\|^{2}\left\|\sqrt{f}\left(\left|x^{\prime *}\right|\right) \eta\right\|^{2}, \\
\int_{0}^{\infty} s^{2} f(s)\left\|P^{\prime}(d s) \eta\right\|^{2} & \leq\|x\|^{2} \int_{0}^{\infty} f(s)\left\|P^{\prime}(d s) \eta\right\|^{2} .
\end{aligned}
$$

By Lemma 1.2, we have $P^{\prime}((\|x\|, \infty)) \eta=0$. We define $P^{\prime}=P^{\prime}([0,\|x\|])$. Then we have $\eta=P^{\prime} \eta$. Suppose that y is any element of N. Then we have

$$
\begin{aligned}
x^{\prime} y \xi & =y \eta \\
& =P^{\prime} y \eta \\
& =P^{\prime} x^{\prime} y \xi \\
& =\int_{0}^{\|x\|} s P^{\prime}(d s) v^{\prime} y \xi
\end{aligned}
$$

Therefore, we have $\left\|x^{\prime}\right\| \leq\|x\|$.

Proposition 1.5

Suppose that ζ_{1} and ζ_{2} are elements of

$$
\text { dom } \exp \left(\frac{h}{2}\right) \cap \text { dom } \exp \left(-\frac{h}{2}\right) .
$$

Then we have

$$
\begin{aligned}
\left(J x J \zeta_{1}, \zeta_{2}\right)=\frac{1}{2} \exp \left(\frac{\omega}{2}\right)(& \left.x_{\omega}^{\prime} \exp \left(\frac{h}{2}\right) \zeta_{1}, \exp \left(-\frac{h}{2}\right) \zeta_{2}\right) \\
& +\frac{1}{2} \exp \left(-\frac{\omega}{2}\right)\left(x_{\omega}^{\prime} \exp \left(-\frac{h}{2}\right) \zeta_{1}, \exp \left(\frac{h}{2}\right) \zeta_{2}\right)
\end{aligned}
$$

Proof. Suppose that a and b are any elements of N. By Proposition 1.4, there exist elements a^{\prime} and b^{\prime} of N^{\prime} such that

$$
J\left(\cosh \frac{h}{2}\right)^{-1} a \xi=a^{\prime} \xi, \quad J\left(\cosh \frac{h}{2}\right)^{-1} b \xi=b^{\prime} \xi
$$

We have

$$
x \xi=\frac{1}{2} \exp \left(\frac{\omega}{2}\right) S x_{\omega}^{\prime} \xi+\frac{1}{2} \exp \left(-\frac{\omega}{2}\right) S^{*} x_{\omega}^{\prime} \xi
$$

Since

$$
\begin{aligned}
\left(a^{\prime *} b^{\prime} \xi, x \xi\right) & =\left(b^{\prime} \xi, x a^{\prime} \xi\right) \\
& =\left(J\left(\cosh \frac{h}{2}\right)^{-1} b \xi, x J\left(\cosh \frac{h}{2}\right)^{-1} a \xi\right) \\
& =\left(\left(\cosh \frac{h}{2}\right)^{-1} J x J\left(\cosh \frac{h}{2}\right)^{-1} a \xi, b \xi\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(a^{\prime *} b^{\prime} \xi, S x_{\omega}^{\prime} \xi\right) & =\left(x_{\omega}^{\prime} \xi, b^{\prime *} a^{\prime} \xi\right) \\
& =\left(S^{*} x_{\omega}^{\prime *} S^{*} b^{\prime} \xi, a^{\prime} \xi\right) \\
& =\left(S^{*} x_{\omega}^{\prime *} S^{*} J\left(\cosh \frac{h}{2}\right)^{-1} b \xi, J\left(\cosh \frac{h}{2}\right)^{-1} a \xi\right) \\
& =\left(\exp \left(-\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} x_{\omega}^{\prime} \exp \left(\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} a \xi, b \xi\right) \\
\left(a^{\prime *} b^{\prime} \xi, S^{*} x_{\omega}^{\prime} \xi\right) & =\left(b^{\prime} \xi, a^{\prime} S^{*} x_{\omega}^{\prime} \xi\right) \\
& =\left(b^{\prime} \xi, S^{*} x_{\omega}^{\prime} S^{*} a^{\prime} \xi\right) \\
& =\left(J\left(\cosh \frac{h}{2}\right)^{-1} b \xi, S^{*} x_{\omega}^{\prime} S^{*} J\left(\cosh \frac{h}{2}\right)^{-1} a \xi\right) \\
& =\left(\exp \left(\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} x_{\omega}^{\prime} \exp \left(-\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} a \xi, b \xi\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
&\left(\cosh \frac{h}{2}\right)^{-1} J x J\left(\cosh \frac{h}{2}\right)^{-1} \\
&= \frac{1}{2} \exp \left(\frac{\omega}{2}\right) \exp \left(-\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} x_{\omega}^{\prime} \exp \left(\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} \\
&+\frac{1}{2} \exp \left(-\frac{\omega}{2}\right) \exp \left(\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} x_{\omega}^{\prime} \exp \left(-\frac{h}{2}\right)\left(\cosh \frac{h}{2}\right)^{-1} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left(J x J \zeta_{1}, \zeta_{2}\right)=\frac{1}{2} \exp \left(\frac{\omega}{2}\right) & \left(x_{\omega}^{\prime} \exp \left(\frac{h}{2}\right) \zeta_{1}, \exp \left(-\frac{h}{2}\right) \zeta_{2}\right) \\
& +\frac{1}{2} \exp \left(-\frac{\omega}{2}\right)\left(x_{\omega}^{\prime} \exp \left(-\frac{h}{2}\right) \zeta_{1}, \exp \left(\frac{h}{2}\right) \zeta_{2}\right)
\end{aligned}
$$

1.4 Complex analysis - interlude

Theorem 1.1
Suppose that f is a bounded continuous function of

$$
\left\{z \in \mathbb{C}:|\operatorname{Im} z| \leq \frac{1}{2}\right\}
$$

into the complex plane which is holomorphic on

$$
\left\{z \in \mathbb{C}:|\operatorname{Im} z|<\frac{1}{2}\right\} .
$$

Then we have

$$
f(0)=\int_{-\infty}^{\infty} e^{\theta t}\left(\frac{1}{2} \exp \left(-\frac{i \theta}{2}\right) f\left(t-\frac{i}{2}\right)+\frac{1}{2} \exp \left(\frac{i \theta}{2}\right) f\left(t+\frac{i}{2}\right)\right) \frac{d t}{\cosh (\pi t)}
$$

for each $-\pi<\theta<\pi$.
Proof. We define $U=\left\{z \in \mathbb{C}:|\operatorname{Im} z|<\frac{1}{2}\right\}$ and

$$
\varphi(z)=\frac{\pi e^{\theta z} f(z)}{\sinh (\pi z)}
$$

Then the function φ is holomorphic on $\{z \in \mathbb{C}:|\operatorname{Im} z|<1\} \backslash\{0\}$ and we have

$$
\begin{aligned}
f(0)=\lim _{z \rightarrow 0} z \varphi(z)=\frac{1}{2 \pi i}\left(\int_{-r}^{r}(\varphi(t\right. & \left.\left.-\frac{i}{2}\right)-\varphi\left(t+\frac{i}{2}\right)\right) d t \\
& \left.+i \int_{-2^{-1}}^{2^{-1}}(\varphi(r+i t)-\varphi(-r+i t)) d t\right)
\end{aligned}
$$

for each $r>0$. We define

$$
\|f\|=\sup _{|\operatorname{Im} z| \leq 2^{-1}}|f(z)| .
$$

Then we have

$$
\left|\int_{-2^{-1}}^{2^{-1}}(\varphi(r+i t)-\varphi(-r+i t)) d t\right| \leq \frac{2 \pi e^{(\theta-\pi) r}\|f\|}{1-e^{-2 \pi r}}+\frac{2 \pi e^{(-\theta-\pi) r}\|f\|}{1-e^{-2 \pi r}} \rightarrow 0 .
$$

Therefore, we have

$$
f(0)=\int_{-\infty}^{\infty} e^{\theta t}\left(\frac{1}{2} \exp \left(-\frac{i \theta}{2}\right) f\left(t-\frac{i}{2}\right)+\frac{1}{2} \exp \left(\frac{i \theta}{2}\right) f\left(t+\frac{i}{2}\right)\right) \frac{d t}{\cosh (\pi t)}
$$

Suppose that x is a self-adjoint operator on a Hilbert space H and let

$$
x=\int_{-\infty}^{\infty} x P(d x)
$$

be a spectral decomposition.

Proposition 1.6

$\operatorname{dom} e^{i k x}=\operatorname{dom} e^{-(\operatorname{Im} k) x}$ for each complex number k.
Proof.

$$
\begin{aligned}
\operatorname{dom} e^{i k x} & =\left\{\xi: \int_{-\infty}^{\infty}\left|e^{i k x}\right|^{2} P_{\xi}(d x)<\infty\right\} \\
& =\left\{\xi: \int_{-\infty}^{\infty}\left|e^{-(\operatorname{Im} k) x}\right|^{2} P_{\xi}(d x)<\infty\right\} \\
& =\operatorname{dom} e^{-(\operatorname{Im} k) x}
\end{aligned}
$$

Remark 1.3
dom $e^{i k x}=H$ for each real number k.

Proposition 1.7

dom $e^{i k_{2} x}$ is a subset of dom $e^{i k_{1} x}$ for each complex numbers k_{1} and k_{2} such that $0 \leq \operatorname{Im} k_{1} \leq \operatorname{Im} k_{2}$.

Proof.

$$
\int_{-\infty}^{\infty}\left|e^{-\left(\operatorname{Im} k_{1}\right) x}\right|^{2} P_{\xi}(d x) \leq \int_{-\infty}^{\infty}\left(1+e^{-\left(\operatorname{Im} k_{2}\right) x}\right)^{2} P_{\xi}(d x)
$$

Proposition 1.8

Suppose that k_{-}and k_{+}are complex numbers such that

$$
\operatorname{Im} k_{-}<\operatorname{Im} k_{+} .
$$

Suppose that ξ is an element of dom $e^{i k_{-} x} \cap \operatorname{dom} e^{i k_{+} x}$. Then the mapping

$$
k \mapsto e^{i k x} \xi
$$

is holomorphic on $\operatorname{Im} k_{-}<\operatorname{Im} k<\operatorname{Im} k_{+}$and bounded continuous on $\operatorname{Im} k_{-} \leq$ $\operatorname{Im} k \leq \operatorname{Im} k_{+}$.

Proof. We first prove that the mapping is bounded continuous on the stripe.

$$
\begin{aligned}
\left\|e^{i k x} \xi\right\|^{2} & =\int_{-\infty}^{\infty}\left|e^{i k x}\right|^{2} P_{\xi}(d x) \\
& \leq \int_{-\infty}^{\infty}\left(e^{-\left(\operatorname{Im} k_{-}\right) x}+e^{-\left(\operatorname{Im} k_{+}\right) x}\right)^{2} P_{\xi}(d x)<\infty
\end{aligned}
$$

Since

$$
\begin{aligned}
\left|e^{i k^{\prime} x}-e^{i k x}\right|^{2} & \leq\left(\left|e^{i k^{\prime} x}\right|+\left|e^{i k x}\right|\right)^{2} \\
& =\left(e^{-\left(\operatorname{Im} k^{\prime}\right) x}+e^{-(\operatorname{Im} k) x}\right)^{2} \\
& \leq 4\left(e^{-\left(\operatorname{Im} k_{-}\right) x}+e^{-\left(\operatorname{Im} k_{+}\right) x}\right)^{2}
\end{aligned}
$$

we have

$$
\lim _{k^{\prime} \rightarrow k}\left\|e^{i k^{\prime} x} \xi-e^{i k x} \xi\right\|^{2}=\lim _{k^{\prime} \rightarrow k} \int_{-\infty}^{\infty}\left|e^{i k^{\prime} x}-e^{i k x}\right|^{2} P_{\xi}(d x)=0 .
$$

Suppose that η is any element of H. Then we have

$$
\left(e^{i k x} \xi, \eta\right)=\int_{-\infty}^{\infty} e^{i k x} P_{\xi, \eta}(d x)
$$

We have

$$
\begin{aligned}
\left|\frac{\partial e^{i k x}}{\partial k}\right| & =\left|i x e^{i k x}\right| \\
& =|x| e^{-(\operatorname{Im} k) x} \\
& \leq|x|\left(e^{-m_{-} x}+e^{-m_{+} x}\right)
\end{aligned}
$$

for $\operatorname{Im} k_{-}<m_{-} \leq \operatorname{Im} k \leq m_{+}<\operatorname{Im} k_{+}$and we have

$$
\int_{-\infty}^{\infty}|x| e^{-m x}\left|P_{\xi, \eta}\right|(d x) \leq\left(\int_{-\infty}^{\infty}|x|^{2} e^{-2 m x} P_{\xi}(d x)\right)^{1 / 2}\|\eta\|
$$

for $\operatorname{Im} k_{-}<m<\operatorname{Im} k_{+}$. Since

$$
\lim _{|x| \rightarrow \infty} \frac{|x| e^{-m x}}{e^{-\left(\operatorname{Im} k_{-}\right) x}+e^{-\left(\operatorname{Im} k_{+}\right) x}}=0
$$

we have

$$
\int_{-\infty}^{\infty}|x|^{2} e^{-2 m x} P_{\xi}(d x)<\infty
$$

and we have

$$
\int_{-\infty}^{\infty}|x|\left(e^{-m_{-} x}+e^{-m_{+} x}\right)\left|P_{\xi, \eta}\right|(d x)<\infty
$$

Suppose that a is a bounded operator on H and let x_{0} be a real number. Then the bounded operator

$$
f\left(x_{0}\right)=\int_{-\infty}^{\infty} e^{i k x_{0}} e^{-i k x} a e^{i k x} \frac{d k}{\cosh (\pi k)}
$$

is Gelfand-Pettis integrable with respect to the σ-weak topology. Suppose that ξ and η are elements of

$$
\text { dom } \exp \left(\frac{x}{2}\right) \cap \text { dom } \exp \left(-\frac{x}{2}\right) \text {. }
$$

Then the function

$$
k \mapsto e^{i k x_{0}}\left(a e^{i k x} \xi, e^{i \bar{k} x} \eta\right)
$$

is holomorphic on $|\operatorname{Im} k|<2^{-1}$ and bounded continuous on $|\operatorname{Im} k| \leq 2^{-1}$. By Theorem 1.1, we have

$$
\begin{aligned}
&(a \xi, \eta)=\frac{1}{2} \exp \left(\frac{x_{0}}{2}\right)\left(f\left(x_{0}\right) \exp \left(\frac{x}{2}\right) \xi, \exp \left(-\frac{x}{2}\right) \eta\right) \\
&+\frac{1}{2} \exp \left(-\frac{x_{0}}{2}\right)\left(f\left(x_{0}\right) \exp \left(-\frac{x}{2}\right) \xi, \exp \left(\frac{x}{2}\right) \eta\right) .
\end{aligned}
$$

Suppose that b is any bounded operator on H such that

$$
\begin{aligned}
& (a \xi, \eta)=\frac{1}{2} \exp \left(\frac{x_{0}}{2}\right)\left(b \exp \left(\frac{x}{2}\right) \xi, \exp \left(-\frac{x}{2}\right) \eta\right) \\
& +\frac{1}{2} \exp \left(-\frac{x_{0}}{2}\right)\left(b \exp \left(-\frac{x}{2}\right) \xi, \exp \left(\frac{x}{2}\right) \eta\right)
\end{aligned}
$$

for each elements ξ and η of
dom $\exp \left(\frac{x}{2}\right) \cap$ dom $\exp \left(-\frac{x}{2}\right)=\operatorname{dom}\left(\int_{-\infty}^{\infty}\left(\exp \left(\frac{x}{2}\right)+\exp \left(-\frac{x}{2}\right)\right) P(d x)\right)$.
Then the function

$$
k \mapsto e^{i k x_{0}}\left(b e^{i k x} \xi, e^{i \bar{k} x} \eta\right)
$$

is holomorphic on $|\operatorname{Im} k|<2^{-1}$ and bounded continuous on $|\operatorname{Im} k| \leq 2^{-1}$. We have

$$
(b \xi, \eta)=\int_{-\infty}^{\infty} e^{i k x_{0}}\left(a e^{i k x} \xi, e^{i k x} \eta\right) \frac{d k}{\cosh (\pi k)}=\left(f\left(x_{0}\right) \xi, \eta\right)
$$

by Theorem 1.1. Then we have

$$
b=\int_{-\infty}^{\infty} e^{i k x_{0}} e^{-i k x} a e^{i k x} \frac{d k}{\cosh (\pi k)}=f\left(x_{0}\right)
$$

1.5 Tomita's theorem for a cyclic and separating vector

According to Section 1.4, we have

$$
x_{\omega}^{\prime}=\int_{-\infty}^{\infty} e^{i \omega t} e^{-i h t} J x J e^{i h t} \frac{d t}{\cosh (\pi t)} .
$$

Proposition 1.9
$e^{-i h t} J N J e^{i h t}$ is a subset of N^{\prime}.
Proof. Suppose that y is any element of N. Then we have

$$
0=\int_{-\infty}^{\infty} e^{i \omega t}\left[e^{-i h t} J x J e^{i h t}, y\right] \frac{d t}{\cosh (\pi t)}
$$

We have

$$
\left[e^{-i h t} J x J e^{i h t}, y\right]=0
$$

by the uniqueness theorem of Fourier transforms.
We have the following theorem by the relation $F=S^{*}$.
Theorem 1.2 (Tomita's theorem for a cyclic and separating vector)

$$
J N J=N^{\prime}
$$

and

$$
e^{i h t} N e^{-i h t}=N, \quad e^{i h t} N^{\prime} e^{-i h t}=N^{\prime}
$$

for each real number t.

2 Hilbert Algebras

2.1 Locally compact groups

Suppose that Δ is the modular function on a locally compact group G.
There exists a unique Radon measure up to multiplication by a positive constant such that

$$
d \mu(g)=\sqrt{\Delta(g)} d g, \quad d \nu(g)=\frac{1}{\sqrt{\Delta(g)}} d g=\sqrt{\Delta\left(g^{-1}\right)} d g
$$

are a left Haar measure and a right Haar measure, respectively.

Remark 2.1

$\mu\left(S^{-1}\right)=\nu(S)$ for any Borel set S.
We define $|S|$ to be the measure of a Borel set S. Then we have

$$
\begin{aligned}
|S| & =\int_{S} \sqrt{\Delta\left(g^{-1}\right)} d \mu(g) \\
& =\int_{S^{-1}} \sqrt{\Delta(g)} d \nu(g)=\left|S^{-1}\right|
\end{aligned}
$$

for any Borel set S.
Suppose that ξ and η are elements of $C_{C}(G)$. Then the support of the continuous function

$$
(g, h) \mapsto \zeta(g, h)=\xi(h) \eta\left(h^{-1} g\right)
$$

is a subset of $(\operatorname{supp} \xi)(\operatorname{supp} \eta) \times \operatorname{supp} \xi$ and the function

$$
\begin{aligned}
g \mapsto(\xi * \eta)(g) & =\int \zeta(g, h) d \mu(h) \\
& =\int \xi(h) \eta\left(h^{-1} g\right) d \mu(h)
\end{aligned}
$$

is an element of $C_{C}(G)$. We have

$$
\begin{aligned}
(\xi * \eta)(g) & =\int \xi\left(h^{-1}\right) \eta(h g) d \nu(h) \\
& =\int \xi\left(g h^{-1}\right) \eta(h) d \nu(h)
\end{aligned}
$$

Proposition 2.1
$C_{C}(G)$ is a complex algebra.
Proof. The mapping

$$
\begin{equation*}
(\xi, \eta) \mapsto \xi * \eta \tag{1}
\end{equation*}
$$

is bilinear and we proceed to show that (1) is associative. We have

$$
\begin{aligned}
((\xi * \eta) * \zeta)(g) & =\int(\xi * \eta)(h) \zeta\left(h^{-1} g\right) d \mu(h) \\
& =\int \xi\left(h_{1}\right) \eta\left(h_{1}^{-1} h_{2}\right) \zeta\left(h_{2}^{-1} g\right) d(\mu \times \mu)\left(h_{1}, h_{2}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\int \eta\left(h_{1}^{-1} h_{2}\right) \zeta\left(h_{2}^{-1} g\right) d \mu\left(h_{2}\right) & =\int \eta\left(h_{2}\right) \zeta\left(h_{2}^{-1} h_{1}^{-1} g\right) d \mu\left(h_{2}\right) \\
& =(\eta * \zeta)\left(h_{1}^{-1} g\right)
\end{aligned}
$$

we have

$$
((\xi * \eta) * \zeta)(g)=\int \xi(h)(\eta * \zeta)\left(h^{-1} g\right) d \mu(h)=(\xi *(\eta * \zeta))(g)
$$

We define a conjugate linear isometry J on $L^{2}(G)$ by

$$
(J \xi)(g)=\overline{\xi\left(g^{-1}\right)}
$$

and we define a closed operator S on $L^{2}(G)$ by

$$
S=J \sqrt{\Delta}
$$

Then we have

$$
S=\sqrt{\Delta}^{-1} J=S^{-1}
$$

Since

$$
\operatorname{dom} S=L^{2}((1+\Delta(g)) d g)
$$

the algebra $C_{C}(G)$ is an invariant core for S.

Suppose that ξ and η are elements of $C_{C}(G)$. Then we have

$$
\begin{aligned}
J(\xi * \eta)(g) & =\overline{(\xi * \eta)\left(g^{-1}\right)} \\
& =\overline{\int \xi(h) \eta\left(h^{-1} g^{-1}\right) d \mu(h)} \\
& =\overline{\int \xi\left(g^{-1} h\right) \eta\left(h^{-1}\right) d \mu(h)} \\
& =\int(J \xi)\left(h^{-1} g\right)(J \eta)(h) d \mu(h) \\
& =((J \eta) *(J \xi))(g)
\end{aligned}
$$

and we have $J(\xi * \eta)=(J \eta) *(J \xi)$.

Proposition 2.2

S is an involution on $C_{C}(G)$.
Proof.

$$
\begin{aligned}
S(\xi * \eta)(g) & =\sqrt{\Delta\left(g^{-1}\right)} \int(J \eta)(h)(J \xi)\left(h^{-1} g\right) d \mu(h) \\
& =\int(S \eta)(h)(S \xi)\left(h^{-1} g\right) d \mu(h) \\
& =((S \eta) *(S \xi))(g)
\end{aligned}
$$

Suppose that ξ and η are elements of $C_{C}(G)$. Then we have

$$
\begin{aligned}
\|\xi * \eta\|_{2}^{2} & =\int\left|\int \xi(h) \eta\left(h^{-1} g\right) d \mu(h)\right|^{2} d g \\
& \leq \int\left|\xi\left(h_{1}\right)\left\|\xi\left(h_{2}\right)\left|\int\right| \eta\left(h_{1}^{-1} g\right)\right\| \eta\left(h_{2}^{-1} g\right)\right| d g d(\mu \times \mu)\left(h_{1}, h_{2}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\int\left|\eta\left(h^{-1} g\right)\right|^{2} d g & =\int\left|\eta\left(h^{-1} g\right)\right|^{2} \sqrt{\Delta\left(g^{-1}\right)} d \mu(g) \\
& =\int|\eta(g)|^{2} \sqrt{\Delta\left(h^{-1}\right)} d g \\
& =\frac{\|\eta\|_{2}^{2}}{\sqrt{\Delta(h)}},
\end{aligned}
$$

we have

$$
\begin{aligned}
\|\xi * \eta\|_{2} & \leq \int|\xi(h)| \frac{\|\eta\|_{2}}{\sqrt[4]{\Delta(h)}} d \mu(h) \\
& =\|\sqrt[4]{\Delta} \xi\|_{1}\|\eta\|_{2}
\end{aligned}
$$

Proposition 2.3

The mapping

$$
\eta \mapsto \pi(\xi) \eta=\xi * \eta
$$

is bounded on $C_{C}(G)$ and we have $\|\pi(\xi)\| \leq\|\sqrt[4]{\Delta} \xi\|_{1}$.
Suppose that K is a compact neighborhood of e. Then there exists an element ξ_{K} of $C_{C}^{+}(G)$ such that $\operatorname{supp} \xi_{K}$ is a subset of K and

$$
\int \xi_{K}(g) d \mu(g)=1
$$

The set of compact neighborhoods of e is a directed set by reverse inclusion. Suppose that η is any element of $C_{C}(G)$. Then we have

$$
\begin{aligned}
\left|\left(\xi_{K} * \eta-\eta\right)(g)\right| & =\left|\int \xi_{K}(h)\left(\eta\left(h^{-1} g\right)-\eta(g)\right) d \mu(h)\right| \\
& \leq \int \xi_{K}(h)\left|\eta\left(h^{-1} g\right)-\eta(g)\right| d \mu(h) .
\end{aligned}
$$

There exists a compact and symmetric neighborhood K_{ε} of e such that

$$
\max _{g \in G}\left|\eta\left(h^{-1} g\right)-\eta(g)\right|<\varepsilon
$$

provided that h is an element of K_{ε}. The net $\left(\xi_{K} * \eta\right)_{K}$ converges to η uniformly and we have $\lim _{K}\left\|\xi_{K} * \eta-\eta\right\|_{2}=0$.

Theorem 2.1

$C_{C}(G)$ is a Hilbert algebra.
Proof.

$$
\begin{aligned}
(\xi * \eta, \zeta) & =\int(\xi * \eta)(g) \overline{\zeta(g)} d g \\
= & \int \xi(h) \eta\left(h^{-1} g\right) \sqrt{\Delta\left(g^{-1}\right)} d(\mu \times \mu)(g, h) \\
= & \int \xi(h) \eta(g) \overline{\zeta(h g)} d(g, h) . \\
(\eta,(S \xi) * \zeta) & =\int \eta(g) \overline{\int(S \xi)(h) \zeta\left(h^{-1} g\right) d \mu(h)} d g \\
& =\int \eta(g) \overline{\int(S \xi)\left(h^{-1}\right) \zeta(h g) d \nu(h)} d g \\
& =\int \eta(g) \int \xi(h) \overline{\zeta(h g)} d h d g \\
& =\int \xi(h) \eta(g) \overline{\zeta(h g)} d(g, h) .
\end{aligned}
$$

References

[1] Masamichi Takesaki. Sayōsokan no kōzō. Iwanami Shoten, Tokyo, 1983.

