Tensor Products

Yasushi Ikeda

January 20, 2024

Definition 1

Suppose that R is a commutative ring with identity. A tensor product of unital R-modules M_{1} and M_{2} is a unital R-module $M_{1} \otimes M_{2}$ with a bilinear mapping

$$
\begin{equation*}
M_{1} \times M_{2} \rightarrow M_{1} \otimes M_{2}, \quad\left(m_{1}, m_{2}\right) \mapsto \tau\left(m_{1}, m_{2}\right)=m_{1} \otimes m_{2} \tag{1}
\end{equation*}
$$

such that for any unital R-module M and for any bilinear mapping

$$
\begin{equation*}
M_{1} \times M_{2} \rightarrow M, \quad\left(m_{1}, m_{2}\right) \mapsto \omega\left(m_{1}, m_{2}\right) \tag{2}
\end{equation*}
$$

there exists a unique linear mapping

$$
\begin{equation*}
M_{1} \otimes M_{2} \rightarrow M \tag{3}
\end{equation*}
$$

such that the following diagram commutes.

Definition 2
Suppose that M is a right module over a ring R and let G be an abelian group. We define

$$
\begin{equation*}
R \times \operatorname{hom}(M, G) \rightarrow \operatorname{hom}(M, G), \quad(r, f) \mapsto r f=[m \mapsto f(m r)] \tag{5}
\end{equation*}
$$

Proposition 1

Suppose that M is a right module over a ring R and let G be an abelian group. The abelian group $\operatorname{hom}(M, G)$ is a left module over the ring R.

Proof. We have the following.

1. We have

$$
\begin{equation*}
r\left(f_{1}+f_{2}\right)=r f_{1}+r f_{2} \tag{6}
\end{equation*}
$$

for any element (r, f) of the set $R \times \operatorname{hom}(M, G)^{2}$ since we have

$$
\begin{align*}
\left(r\left(f_{1}+f_{2}\right)\right)(m) & =\left(f_{1}+f_{2}\right)(m r) \\
& =f_{1}(m r)+f_{2}(m r) \\
& =\left(r f_{1}\right)(m)+\left(r f_{2}\right)(m)=\left(r f_{1}+r f_{2}\right)(m) \tag{7}
\end{align*}
$$

for any element m.
2. We have

$$
\begin{equation*}
\left(r_{1}+r_{2}\right) f=r_{1} f+r_{2} f \tag{8}
\end{equation*}
$$

for any element (r, f) of the set $R^{2} \times \operatorname{hom}(M, G)$ since we have

$$
\begin{align*}
\left(\left(r_{1}+r_{2}\right) f\right)(m) & =f\left(m\left(r_{1}+r_{2}\right)\right) \\
& =f\left(m r_{1}+m r_{2}\right) \\
& =f\left(m r_{1}\right)+f\left(m r_{2}\right) \\
& =\left(r_{1} f\right)(m)+\left(r_{2} f\right)(m)=\left(r_{1} f+r_{2} f\right)(m) \tag{9}
\end{align*}
$$

for any element m.
3. We have

$$
\begin{equation*}
\left(r_{1} r_{2}\right) f=r_{1}\left(r_{2} f\right) \tag{10}
\end{equation*}
$$

for any element (r, f) of the set $R^{2} \times \operatorname{hom}(M, G)$ since we have

$$
\begin{align*}
\left(\left(r_{1} r_{2}\right) f\right)(m) & =f\left(m\left(r_{1} r_{2}\right)\right) \\
& =f\left(\left(m r_{1}\right) r_{2}\right) \\
& =\left(r_{2} f\right)\left(m r_{1}\right)=\left(r_{1}\left(r_{2} f\right)\right)(m) \tag{11}
\end{align*}
$$

for any element m.

Definition 3

A mapping of an abelian group into an abelian group is said to be additive if it is a homomorphism of groups.

Definition 4

Suppose that M is a right module and N is a left module over a ring R. A biadditive mapping ω of the product $M \times N$ into an abelian group is called a bihomomorphism if we have

$$
\begin{equation*}
\omega(m r, n)=\omega(m, r n) \tag{12}
\end{equation*}
$$

for any element (r, m, n) of the set $R \times M \times N$.

Proposition 2

A right module over a ring R is a (\mathbb{Z}, R)-bimodule.

Proposition 3

A module over a commutative ring R is an (R, R)-bimodule.

Proposition 4

An abelian group is a (\mathbb{Z}, \mathbb{Z})-bimodule.

Definition 5

Suppose that R_{0}, R_{1}, R_{2} are rings and let M_{1} and M_{2} be an $\left(R_{0}, R_{1}\right)$-bimodule and an $\left(R_{1}, R_{2}\right)$-bimodule respectively. A mapping ω of the product $M_{1} \times$ M_{2} into an $\left(R_{0}, R_{2}\right)$-bimodule is called a bihomomorphism if it satisfies the following.

1. The mapping

$$
\begin{equation*}
m_{1} \mapsto \omega\left(m_{1}, m_{2}\right) \tag{13}
\end{equation*}
$$

is a homomorphism of left modules over the ring R_{0} for any element m_{2}.
2. We have

$$
\begin{equation*}
\omega\left(m_{1} r_{1}, m_{2}\right)=\omega\left(m_{1}, r_{1} m_{2}\right) \tag{14}
\end{equation*}
$$

for any element $\left(r_{1}, m\right)$ of the set $R_{1} \times\left(M_{1} \times M_{2}\right)$.
3. The mapping

$$
\begin{equation*}
m_{2} \mapsto \omega\left(m_{1}, m_{2}\right) \tag{15}
\end{equation*}
$$

is a homomorphism of right modules over the ring R_{2} for any element m_{1}. The definition is compatible with Definition 4. See Proposition 2 and 4.

Definition 6

A homomorphism of bimodules is a homomorphism of left and right modules.

Definition 7

Suppose that

$$
\begin{equation*}
R_{0}, \quad R_{1}, \quad \ldots, \quad R_{n-1}, \quad R_{n} \tag{16}
\end{equation*}
$$

are rings and let

$$
\begin{equation*}
M_{1}, \quad \ldots, \quad M_{n} \tag{17}
\end{equation*}
$$

be an $\left(R_{0}, R_{1}\right)$-bimodule, \ldots, an $\left(R_{n-1}, R_{n}\right)$-bimodule respectively. A multiadditive mapping ω of the product $M_{1} \times \cdots \times M_{n}$ into an $\left(R_{0}, R_{n}\right)$-bimodule is called a multihomomorphism if it satisfies the following.

1. The mapping

$$
\begin{equation*}
m_{1} \mapsto \omega\left(m_{1}, m_{2}, \ldots, m_{n}\right) \tag{18}
\end{equation*}
$$

is a homomorphism of left modules over the ring R_{0} for any element $\left(m_{2}, \ldots, m_{n}\right)$.
2. We have

$$
\begin{align*}
& \omega\left(m_{1}, \ldots, m_{k-1}, m_{k} r_{k}, m_{k+1}, m_{k+2}, \ldots, m_{n}\right) \\
& \quad=\omega\left(m_{1}, \ldots, m_{k-1}, m_{k}, r_{k} m_{k+1}, m_{k+2}, \ldots, m_{n}\right) \tag{19}
\end{align*}
$$

for any element $\left(r_{k}, m\right)$ of the set $R_{k} \times\left(M_{1} \times \cdots \times M_{n}\right)$ for any positive integer $k<n$.
3. The mapping

$$
\begin{equation*}
m_{n} \mapsto \omega\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \tag{20}
\end{equation*}
$$

is a homomorphism of right modules over the ring R_{n} for any element $\left(m_{1}, \ldots, m_{n-1}\right)$.

Remark 1

Suppose that R is a ring. Any mapping of the product $\{()\}$ into an (R, R) bimodule is a multihomomorphism.

Remark 2
Suppose that R and S are rings and let M and N are (R, S)-bimodules. A mapping of the bimodule M into the bimodule N is a multihomomorphism if and only if it is a homomorphism of bimodules.

Proposition 5

Suppose that M is a right module and N is a left module over a ring R and let G be an abelian group. The following are equivalent for a mapping ω of the product $M \times N$ into the abelian group G.

1. The mapping ω is a bihomomorphism.
2. The mapping

$$
\begin{equation*}
N \rightarrow G, \quad n \mapsto \omega(m, n) \tag{21}
\end{equation*}
$$

is a homomorphism of groups for any element m and the mapping

$$
\begin{equation*}
M \rightarrow \operatorname{hom}(N, G), \quad \quad m \mapsto[n \mapsto \omega(m, n)] \tag{22}
\end{equation*}
$$

is a homomorphism of right modules over the ring R.
3. The mapping

$$
\begin{equation*}
M \rightarrow G, \quad m \mapsto \omega(m, n) \tag{23}
\end{equation*}
$$

is a homomorphism of groups for any element n and the mapping

$$
\begin{equation*}
N \rightarrow \operatorname{hom}(M, G), \quad \quad n \mapsto[m \mapsto \omega(m, n)] \tag{24}
\end{equation*}
$$

is a homomorphism of left modules over the ring R.
Proof. Suppose that the mapping ω is a bihomomorphism. The mapping

$$
\begin{equation*}
N \rightarrow G, \quad n \mapsto \omega(m, n) \tag{25}
\end{equation*}
$$

is a homomorphism of groups for any element m since we have

$$
\begin{equation*}
\omega\left(m, n_{1}+n_{2}\right)=\omega\left(m, n_{1}\right)+\omega\left(m, n_{2}\right) \tag{26}
\end{equation*}
$$

for any element n of the set N^{2}. The mapping

$$
\begin{equation*}
M \rightarrow \operatorname{hom}(N, G), \quad m \mapsto[n \mapsto \omega(m, n)] \tag{27}
\end{equation*}
$$

is a homomorphism of right modules over the ring R since we have

$$
\begin{equation*}
\omega\left(m_{1}+m_{2}, n\right)=\omega\left(m_{1}, n\right)+\omega\left(m_{2}, n\right) \tag{28}
\end{equation*}
$$

for any element (m, n) of the set $M^{2} \times N$ and we have

$$
\begin{equation*}
\omega(m r, n)=\omega(m, r n) \tag{29}
\end{equation*}
$$

for any element (m, r, n) of the set $M \times R \times N$.
Suppose that the mapping

$$
\begin{equation*}
N \rightarrow G, \quad n \mapsto \omega(m, n) \tag{30}
\end{equation*}
$$

is a homomorphism of groups for any element m and the mapping

$$
\begin{equation*}
M \rightarrow \operatorname{hom}(N, G), \quad m \mapsto[n \mapsto \omega(m, n)] \tag{31}
\end{equation*}
$$

is a homomorphism of right modules over the ring R. The mapping

$$
\begin{equation*}
m \mapsto \omega(m, n) \tag{32}
\end{equation*}
$$

is a homomorphism of groups of the right module M into the abelian group G for any element n of the left module N and we have

$$
\begin{equation*}
\omega(m r, n)=\omega(m, r n) \tag{33}
\end{equation*}
$$

for any element (m, r, n) of the set $M \times R \times N$ since the mapping

$$
\begin{equation*}
M \rightarrow \operatorname{hom}(N, G), \quad \quad m \mapsto[n \mapsto \omega(m, n)] \tag{34}
\end{equation*}
$$

is a homomorphism of right modules over the ring R.

Proposition 6

Suppose that M is a right module and N is a left module over a ring R and let G be an abelian group. Suppose that ω is a bihomomorphism of the product $M \times N$ into the abelian group G and let f be a homomorphism of groups of the abelian group G into an abelian group. The mapping $f \circ \omega$ is a bihomomorphism.

Definition 8

A tensor product of a right module M and a left module N over a ring R is an abelian group $M \otimes N$ with a bihomomorphism

$$
\begin{equation*}
M \times N \rightarrow M \otimes N, \quad(m, n) \mapsto \tau(m, n)=m \otimes n \tag{35}
\end{equation*}
$$

such that for any abelian group G and for any bihomomorphism

$$
\begin{equation*}
M \times N \rightarrow G, \quad(m, n) \mapsto \omega(m, n) \tag{36}
\end{equation*}
$$

there exists a unique homomorphism of groups

$$
\begin{equation*}
M \otimes N \rightarrow G \tag{37}
\end{equation*}
$$

such that the following diagram commutes.

Proposition 7

Suppose that

$$
\begin{equation*}
M \otimes_{1} N \stackrel{\tau_{1}}{\longleftarrow} M \times N \xrightarrow{\tau_{2}} M \otimes_{2} N \tag{39}
\end{equation*}
$$

are tensor products of a right module M and a left module N over a ring R. There exists a unique isomorphism of groups

$$
\begin{equation*}
M \otimes_{1} N \leftrightarrow M \otimes_{2} N \tag{40}
\end{equation*}
$$

such that the following diagram commutes.

Proof. There exist unique homomorphisms of groups f_{1} and f_{2} such that the following diagrams commute.

The following diagrams commute.

We have $f_{2} \circ f_{1}=1$ and we have $f_{1} \circ f_{2}=1$.

Theorem 1

Suppose that M is a right module and N is a left module over a ring R. There exists a unique tensor product of the right module M and the left module N.

Proof. We write $\bar{\tau}$ for the canonical epimorphism of the free abelian group $\mathbb{Z}^{\oplus(M \times N)}$ onto the quotient group by the subgroup generated by the subset

$$
\begin{aligned}
& \{(m r, n)-(m, r n):(m, r, n) \in M \times R \times N\} \\
& \quad \cup\left\{\left(m_{1}+m_{2}, n\right)-\left(m_{1}, n\right)-\left(m_{2}, n\right):\left(m_{1}, m_{2}, n\right) \in M \times M \times N\right\} \\
& \quad \cup\left\{\left(m, n_{1}+n_{2}\right)-\left(m, n_{1}\right)-\left(m, n_{2}\right):\left(m, n_{1}, n_{2}\right) \in M \times N \times N\right\}
\end{aligned}
$$

The restriction τ of the canonical epimorphism $\bar{\tau}$ to the product $M \times N$ is a bihomomorphism. Suppose that G is an abelian group and let ω be a bihomomorphism of the product $M \times N$ into the abelian group G. The bihomomorphism
ω extends uniquely to the homomorphism of groups of the free abelian group $\mathbb{Z}^{\oplus(M \times N)}$.

The homomorphism ω factors uniquely through the canonical epimorphism $\bar{\tau}$.

Proposition 8

Suppose that M is a right module and N is a left module over a ring R. The abelian group $M \otimes N$ is the monoid generated by the subset

$$
\begin{equation*}
\{m \otimes n:(m, n) \in M \times N\} . \tag{45}
\end{equation*}
$$

Proposition 9
Suppose that M_{1} and N_{1} are right modules and M_{2} and N_{2} are left modules over a ring R. Suppose that f_{1} is a homomorphism of right modules over the ring R of the right module M_{1} into the right module N_{1}. Suppose that f_{2} is a homomorphism of left modules over the ring R of the left module M_{2} into the left module N_{2}. There exists a unique homomorphism of groups of the abelian group $M_{1} \otimes M_{2}$ into the abelian group $N_{1} \otimes N_{2}$ such that the following diagram commutes.

Proposition 10

Suppose that M and N are abelian groups and let G be an abelian group. A mapping ω of the product $M \times N$ into the abelian group G is a bihomomorphism if and only if it is a bilinear mapping.

Proposition 11
Suppose that M and N are unital modules over a commutative ring R. The (R, R)-bimodule $M \otimes N$ with the bihomomorphism

$$
\begin{equation*}
M \times N \rightarrow M \otimes N, \quad(m, n) \mapsto m \otimes n \tag{47}
\end{equation*}
$$

is a tensor product in the sense of Definition 1

Definition 9

Suppose that

$$
\begin{equation*}
R_{0}, \quad R_{1}, \quad \ldots, \quad R_{n-1}, \quad R_{n} \tag{48}
\end{equation*}
$$

are rings and let

$$
\begin{array}{lll}
M_{1}, & \ldots, & M_{n} \tag{49}
\end{array}
$$

be an $\left(R_{0}, R_{1}\right)$-bimodule, \ldots, an $\left(R_{n-1}, R_{n}\right)$-bimodule respectively. A tensor product of the bimodules M_{1}, \ldots, M_{n} is an $\left(R_{0}, R_{n}\right)$-bimodule $\bigotimes_{k=1}^{n} M_{k}$ with a multihomomorphism

$$
\begin{equation*}
\prod_{k=1}^{n} M_{k} \rightarrow \bigotimes_{k=1}^{n} M_{k}, \quad \quad m \mapsto \tau(m)=\bigotimes_{k=1}^{n} m_{k} \tag{50}
\end{equation*}
$$

such that for any $\left(R_{0}, R_{n}\right)$-bimodule M and for any multihomomorphism

$$
\begin{equation*}
\prod_{k=1}^{n} M_{k} \rightarrow M, \quad m \mapsto \omega(m) \tag{51}
\end{equation*}
$$

there exists a unique homomorphism of bimodules

$$
\begin{equation*}
\bigotimes_{k=1}^{n} M_{k} \rightarrow M \tag{52}
\end{equation*}
$$

such that the following diagram commutes.

Proposition 12
Suppose that

$$
\begin{equation*}
R_{0}, \quad R_{1}, \quad \ldots, \quad R_{n-1}, \quad R_{n} \tag{54}
\end{equation*}
$$

are rings and let

$$
\begin{equation*}
M_{1}, \quad \ldots, \quad M_{n} \tag{55}
\end{equation*}
$$

be an $\left(R_{0}, R_{1}\right)$-bimodule, \ldots, an $\left(R_{n-1}, R_{n}\right)$-bimodule respectively. Suppose that

$$
\begin{equation*}
M_{1} \otimes_{1} \cdots \otimes_{1} M_{n} \stackrel{\tau_{1}}{\longleftarrow} M_{1} \times \cdots \times M_{n} \xrightarrow{\tau_{2}} M_{1} \otimes_{2} \cdots \otimes_{2} M_{n} \tag{56}
\end{equation*}
$$

are tensor products of the bimodules M_{1}, \ldots, M_{n}. There exists a unique isomorphism of bimodules

$$
\begin{equation*}
M_{1} \otimes_{1} \cdots \otimes_{1} M_{n} \leftrightarrow M_{1} \otimes_{2} \cdots \otimes_{2} M_{n} \tag{57}
\end{equation*}
$$

such that the following diagram commutes.

Proof. There exist unique homomorphisms of bimodules f_{1} and f_{2} such that the following diagrams commute.

The following diagrams commute.

We have $f_{2} \circ f_{1}=1$ and we have $f_{1} \circ f_{2}=1$.
Proposition 13
Suppose that R_{0}, R_{1}, R_{2} are rings and let M_{1} and M_{2} be an $\left(R_{0}, R_{1}\right)$-bimodule and an (R_{1}, R_{2})-bimodule respectively.

1. The abelian group $M_{1} \otimes M_{2}$ is an $\left(R_{0}, R_{2}\right)$-bimodule.
2. The bihomomorphism into the abelian group

$$
\begin{equation*}
M_{1} \times M_{2} \rightarrow M_{1} \otimes M_{2}, \quad\left(m_{1}, m_{2}\right) \mapsto m_{1} \otimes m_{2} \tag{63}
\end{equation*}
$$

is a bihomomorphism into the $\left(R_{0}, R_{2}\right)$-bimodule.
3. The $\left(R_{0}, R_{2}\right)$-bimodule $M_{1} \otimes M_{2}$ with the bihomomorphism

$$
\begin{equation*}
M_{1} \times M_{2} \rightarrow M_{1} \otimes M_{2}, \quad\left(m_{1}, m_{2}\right) \mapsto m_{1} \otimes m_{2} \tag{64}
\end{equation*}
$$

is a tensor product in the sense of Definition 9 .
Proof. Suppose that M is an $\left(R_{0}, R_{2}\right)$-bimodule and let

$$
\begin{equation*}
M_{1} \times M_{2} \rightarrow M, \quad\left(m_{1}, m_{2}\right) \mapsto \omega\left(m_{1}, m_{2}\right) \tag{65}
\end{equation*}
$$

be a bihomomorphism. There exists a unique homomorphism of groups

$$
\begin{equation*}
M_{1} \otimes M_{2} \rightarrow M \tag{66}
\end{equation*}
$$

such that the following diagram commutes since the bihomomorphism ω is a bihomomorphism into the abelian group.

The homomorphism of groups 66) is a homomorphism of $\left(R_{0}, R_{2}\right)$-bimodules.

Proposition 14

Suppose that M_{1} and N_{1} are right modules and M_{2} and N_{2} are left modules over a ring R. There exists a unique bihomomorphism

$$
\begin{align*}
& \left(\operatorname{hom}_{R}\left(M_{1}, N_{1}\right) \otimes_{\mathbb{Z}} \operatorname{hom}_{R}\left(M_{2}, N_{2}\right)\right) \times\left(M_{1} \otimes M_{2}\right) \rightarrow N_{1} \otimes N_{2}, \\
& (f, m) \mapsto f m \tag{68}
\end{align*}
$$

such that we have

$$
\begin{equation*}
\left(f_{1} \otimes_{\mathbb{Z}} f_{2}\right)\left(m_{1} \otimes m_{2}\right)=f_{1}\left(m_{1}\right) \otimes f_{2}\left(m_{2}\right) \tag{69}
\end{equation*}
$$

for any element (f, m) of the set

$$
\begin{equation*}
\left(\operatorname{hom}_{R}\left(M_{1}, N_{1}\right) \times \operatorname{hom}_{R}\left(M_{2}, N_{2}\right)\right) \times\left(M_{1} \times M_{2}\right) \tag{70}
\end{equation*}
$$

Remark 3
A ring R is an (R, R)-bimodule.
Proposition 15
Suppose that R_{0} and R_{1} are rings and let M_{1} be an $\left(R_{0}, R_{1}\right)$-bimodule.

1. We have an isomorphism of $\left(R_{0}, R_{1}\right)$-bimodule

$$
\begin{equation*}
R_{0} \otimes M_{1}=M_{1}, \quad r_{0} \otimes m_{1}=r_{0} m_{1} \tag{71}
\end{equation*}
$$

provided that the left module M_{1} is unital.
2. We have an isomorphism of $\left(R_{0}, R_{1}\right)$-bimodule

$$
\begin{equation*}
M_{1} \otimes R_{1}=M_{1}, \quad m_{1} \otimes r_{1}=m_{1} r_{1} \tag{72}
\end{equation*}
$$

provided that the right module M_{1} is unital.

Proof. There exists a unique homomorphism of $\left(R_{0}, R_{1}\right)$-bimodules f

$$
\begin{equation*}
R_{0} \otimes M_{1} \rightarrow M_{1}, \quad r_{0} \otimes m_{1} \mapsto r_{0} m_{1} \tag{73}
\end{equation*}
$$

since the mapping

$$
\begin{equation*}
R_{0} \times M_{1} \rightarrow M_{1}, \quad\left(r_{0}, m_{1}\right) \mapsto r_{0} m_{1} \tag{74}
\end{equation*}
$$

is a bihomomorphism. The homomorphism of groups

$$
\begin{equation*}
M_{1} \rightarrow R_{0} \otimes M_{1}, \quad \quad m_{1} \mapsto g\left(m_{1}\right)=1 \otimes m_{1} \tag{75}
\end{equation*}
$$

is a homomorphism of $\left(R_{0}, R_{1}\right)$-bimodules since we have

$$
\begin{align*}
g\left(r_{0} m_{1}\right) & =1 \otimes\left(r_{0} m_{1}\right) \\
& =r_{0} \otimes m_{1} \\
& =r_{0}\left(1 \otimes m_{1}\right)=r_{0} g\left(m_{1}\right) \tag{76}
\end{align*}
$$

and we have

$$
\begin{align*}
g\left(m_{1} r_{1}\right) & =1 \otimes\left(m_{1} r_{1}\right) \\
& =\left(1 \otimes m_{1}\right) r_{1}=g\left(m_{1}\right) r_{1} \tag{77}
\end{align*}
$$

for any element $\left(r, m_{1}\right)$ of the set $\left(R_{0} \times R_{1}\right) \times M_{1}$. The homomorphism of (R_{0}, R_{1})-bimodules g is an epimorphism and we have

$$
\begin{equation*}
(f \circ g)\left(m_{1}\right)=f\left(1 \otimes m_{1}\right)=m_{1} \tag{78}
\end{equation*}
$$

for any element m_{1} since the left module M_{1} is unital.
Proposition 16
Suppose that $R_{0}, R_{1}, R_{2}, R_{3}$ are rings and let M_{1}, M_{2}, M_{3} be an $\left(R_{0}, R_{1}\right)$ bimodule, an $\left(R_{1}, R_{2}\right)$-bimodule, an $\left(R_{2}, R_{3}\right)$-bimodule respectively. There exists a unique isomorphism of $\left(R_{0}, R_{3}\right)$-bimodules

$$
\begin{align*}
& \left(M_{1} \otimes M_{2}\right) \otimes M_{3}=M_{1} \otimes\left(M_{2} \otimes M_{3}\right) \\
& \quad\left(m_{1} \otimes m_{2}\right) \otimes m_{3}=m_{1} \otimes\left(m_{2} \otimes m_{3}\right) \tag{79}
\end{align*}
$$

Proof. The $\left(R_{0}, R_{3}\right)$-bimodule $\left(M_{1} \otimes M_{2}\right) \otimes M_{3}$ is the monoid generated by the subset

$$
\begin{equation*}
\left\{\left(m_{1} \otimes m_{2}\right) \otimes m_{3}: m \in M_{1} \times M_{2} \times M_{3}\right\} \tag{80}
\end{equation*}
$$

There exists a unique mapping

$$
\begin{equation*}
\left(M_{1} \otimes M_{2}\right) \times M_{3} \rightarrow M_{1} \otimes\left(M_{2} \otimes M_{3}\right), \quad\left(m_{12}, m_{3}\right) \mapsto \omega\left(m_{12}, m_{3}\right) \tag{81}
\end{equation*}
$$

such that the mapping

$$
\begin{equation*}
M_{1} \otimes M_{2} \rightarrow M_{1} \otimes\left(M_{2} \otimes M_{3}\right), \quad m_{12} \mapsto \omega\left(m_{12}, m_{3}\right) \tag{82}
\end{equation*}
$$

is a homomorphism of left modules for any element m_{3} and we have

$$
\begin{equation*}
\omega\left(m_{1} \otimes m_{2}, m_{3}\right)=m_{1} \otimes\left(m_{2} \otimes m_{3}\right) \tag{83}
\end{equation*}
$$

for any element m since the mapping

$$
\begin{equation*}
M_{1} \times M_{2} \rightarrow M_{1} \otimes\left(M_{2} \otimes M_{3}\right), \quad\left(m_{1}, m_{2}\right) \mapsto m_{1} \otimes\left(m_{2} \otimes m_{3}\right) \tag{84}
\end{equation*}
$$

is a bihomomorphism into the left module for any element m_{3}. There exists a unique homomorphism of $\left(R_{0}, R_{3}\right)$-bimodules

$$
\begin{align*}
\left(M_{1} \otimes M_{2}\right) \otimes M_{3} \rightarrow M_{1} \otimes\left(M_{2} \otimes\right. & \left.M_{3}\right) \\
& \left(m_{1} \otimes m_{2}\right) \otimes m_{3} \mapsto m_{1} \otimes\left(m_{2} \otimes m_{3}\right) \tag{85}
\end{align*}
$$

since the mapping ω is a bihomomorphism into the $\left(R_{0}, R_{3}\right)$-bimodule.

Theorem 2

Suppose that

$$
\begin{equation*}
R_{0}, \quad R_{1}, \quad \ldots, \quad R_{n-1}, \quad R_{n} \tag{86}
\end{equation*}
$$

are rings and let

$$
\begin{equation*}
M_{1}, \quad \ldots, \quad M_{n} \tag{87}
\end{equation*}
$$

be an $\left(R_{0}, R_{1}\right)$-bimodule, \ldots, an ($\left.R_{n-1}, R_{n}\right)$-bimodule respectively.

1. There exists a unique tensor product of the bimodules M_{1}, \ldots, M_{n} provided that the integer n is positive.
2. Suppose that the integer n is positive. We have

$$
\begin{equation*}
\bigotimes_{k=1}^{1} M_{k}=M_{1}, \quad \bigotimes_{k=1}^{1} m_{k}=m_{1} \tag{88}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\bigotimes_{k=1}^{n} M_{k}=\left(\bigotimes_{k=1}^{n-1} M_{k}\right) \otimes M_{n}, \quad \bigotimes_{k=1}^{n} m_{k}=\left(\bigotimes_{k=1}^{n-1} m_{k}\right) \otimes m_{n} \tag{89}
\end{equation*}
$$

provided that we have $n>1$.
3. The $\left(R_{0}, R_{n}\right)$-bimodule $\bigotimes_{k=1}^{n} M_{k}$ is the monoid generated by the subset

$$
\begin{equation*}
\left\{\bigotimes_{k=1}^{n} m_{k}: m \in \prod_{k=1}^{n} M_{k}\right\} \tag{90}
\end{equation*}
$$

provided that the integer n is positive.

Proposition 17

Suppose that

$$
\begin{equation*}
R_{0}, \quad R_{1}, \quad \ldots, \quad R_{n-1}, \quad R_{n} \tag{91}
\end{equation*}
$$

are rings and let

$$
\begin{equation*}
M_{1}, \quad \ldots, \quad M_{n} \tag{92}
\end{equation*}
$$

be an $\left(R_{0}, R_{1}\right)$-bimodule, \ldots, an $\left(R_{n-1}, R_{n}\right)$-bimodule respectively.

1. Suppose that ω is a multihomomorphism of the product $\prod_{k=1}^{n} M_{k}$ into an $\left(R_{0}, R_{n}\right)$-bimodule M and let f be a homomorphism of $\left(R_{0}, R_{n}\right)$ bimodules of the (R_{0}, R_{n})-bimodule M into an $\left(R_{0}, R_{n}\right)$-bimodule. The mapping $f \circ \omega$ is a multihomomorphism.
2. Suppose that M is an $\left(R_{0}, R_{n}\right)$-bimodule. The abelian group

$$
\begin{equation*}
\operatorname{hom}_{\left(R_{0}, R_{n}\right)}\left(\bigotimes_{k=1}^{n} M_{k}, M\right) \tag{93}
\end{equation*}
$$

is the abelian group of multihomomorphisms of the product $\prod_{k=1}^{n} M_{k}$ into the (R_{0}, R_{n})-bimodule M provided that the integer n is positive.

Proposition 18

Suppose that A is an algebra and M is a unital module over a commutative ring. The tensor product of the algebra A and the unital module M is an (A, A)-bimodule such that we have

$$
\begin{equation*}
x_{1}\left(x_{2} \otimes m\right)=\left(x_{1} x_{2}\right) \otimes m=\left(x_{1} \otimes m\right) x_{2} \tag{94}
\end{equation*}
$$

for any element (x, m) of the set $A^{2} \times M$.

Proposition 19

Suppose that A is an algebra with identity and M is a unital module over a commutative ring R.

1. The (A, A)-bimodule $A \otimes M$ is compatible with the R-module $A \otimes M$.
2. The (A, A)-bimodule $A \otimes M$ is unital.

Proof. 1. We have $(r 1)(x \otimes m)=((r 1) x) \otimes m=(r x) \otimes m=r(x \otimes m)$ for any element (r, x, m) of the set $R \times A \times M$.
2. We have $1(x \otimes m)=x \otimes m=(x \otimes m) 1$ for any element (x, m) of the set $A \times M$.

Theorem 3

Suppose that A is an algebra with identity and M_{1} and M_{2} are unital modules over a commutative ring R. We have an isomorphism of unital (A, A)-bimodules

$$
\begin{align*}
A \otimes\left(M_{1} \otimes M_{2}\right)=\left(A \otimes M_{1}\right) \otimes_{A}\left(A \otimes M_{2}\right) & \\
\left(x_{1} x_{2}\right) \otimes\left(m_{1} \otimes m_{2}\right) & =\left(x_{1} \otimes m_{1}\right) \otimes_{A}\left(x_{2} \otimes m_{2}\right) \tag{95}
\end{align*}
$$

Proof. There exists a unique bilinear mapping over the commutative ring R

$$
\begin{align*}
& \left(A \otimes M_{1}\right) \times\left(A \otimes M_{2}\right) \rightarrow A \otimes\left(M_{1} \otimes M_{2}\right) \\
& \quad\left(x_{1} \otimes m_{1}, x_{2} \otimes m_{2}\right) \mapsto f\left(x_{1} \otimes m_{1}, x_{2} \otimes m_{2}\right)=\left(x_{1} x_{2}\right) \otimes\left(m_{1} \otimes m_{2}\right) \tag{96}
\end{align*}
$$

since the mapping

$$
\begin{align*}
& A \times M_{1} \times A \times M_{2} \rightarrow A \otimes\left(M_{1} \otimes M_{2}\right) \\
& \quad\left(x_{1}, m_{1}, x_{2}, m_{2}\right) \mapsto\left(x_{1} x_{2}\right) \otimes\left(m_{1} \otimes m_{2}\right) \tag{97}
\end{align*}
$$

is bilinear over the commutative ring R. There exists a unique homomorphism of (A, A)-bimodules

$$
\begin{align*}
\left(A \otimes M_{1}\right) \otimes_{A}\left(A \otimes M_{2}\right) & \rightarrow A \otimes\left(M_{1} \otimes M_{2}\right) \\
& \left(x_{1} \otimes m_{1}\right) \otimes_{A}\left(x_{2} \otimes m_{2}\right) \mapsto\left(x_{1} x_{2}\right) \otimes\left(m_{1} \otimes m_{2}\right) \tag{98}
\end{align*}
$$

since the bilinear mapping f is a bihomomorphism into the (A, A)-bimodule. We define a mapping

$$
\begin{align*}
A \times M_{1} \times M_{2} \rightarrow\left(A \otimes M_{1}\right) \otimes_{A}\left(A \otimes M_{2}\right) & \\
\left(x, m_{1}, m_{2}\right) \mapsto g\left(x, m_{1}, m_{2}\right) & =x\left(\left(1 \otimes m_{1}\right) \otimes_{A}\left(1 \otimes m_{2}\right)\right) \\
& =\left(\left(1 \otimes m_{1}\right) \otimes_{A}\left(1 \otimes m_{2}\right)\right) x . \tag{99}
\end{align*}
$$

The unital (A, A)-bimodule $\left(A \otimes M_{1}\right) \otimes_{A}\left(A \otimes M_{2}\right)$ is a unital module over the commutative ring R such that we have

$$
\begin{align*}
g\left(r x_{1} x_{2}, m_{1}, m_{2}\right) & =r\left(\left(x_{1} \otimes m_{1}\right) \otimes_{A}\left(x_{2} \otimes m_{2}\right)\right) \\
& =\left(\left(x_{1} \otimes m_{1}\right) \otimes_{A}\left(x_{2} \otimes m_{2}\right)\right) r \tag{100}
\end{align*}
$$

for any element (r, x, m) of the set $R \times A^{2} \times\left(M_{1} \times M_{2}\right)$. There exists a unique homomorphism of modules over R

$$
\begin{align*}
A \otimes\left(M_{1} \otimes M_{2}\right) \rightarrow\left(A \otimes M_{1}\right) \otimes_{A}(A \otimes & \left.M_{2}\right) \\
& x \otimes\left(m_{1} \otimes m_{2}\right) \mapsto g\left(x, m_{1}, m_{2}\right) \tag{101}
\end{align*}
$$

since the mapping g is multilinear over the commutative ring R. The homomorphism (98) is an isomorphism since we have

$$
\begin{align*}
(g \circ f)\left(\left(x_{1} \otimes m_{1}\right) \otimes_{A}\left(x_{2} \otimes m_{2}\right)\right) & =g\left(\left(x_{1} x_{2}\right) \otimes\left(m_{1} \otimes m_{2}\right)\right) \\
& =\left(x_{1} \otimes m_{1}\right) \otimes_{A}\left(x_{2} \otimes m_{2}\right) \tag{102}
\end{align*}
$$

for any element (x, m) of the set $A^{2} \times\left(M_{1} \times M_{2}\right)$ and we have

$$
\begin{equation*}
(f \circ g)\left(x \otimes\left(m_{1} \otimes m_{2}\right)\right)=x \otimes\left(m_{1} \otimes m_{2}\right) \tag{103}
\end{equation*}
$$

for any element (x, m) of the set $A \times\left(M_{1} \times M_{2}\right)$.

References

[1] Pierre Antoine Grillet. Abstract Algebra. Springer, 2nd edition, 2007.

