Tensor Products

Yasushi Ikeda

January 20, 2024

Definition 1

Suppose that R is a commutative ring with identity. A tensor product of unital R-modules M_1 and M_2 is a unital R-module $M_1 \otimes M_2$ with a bilinear mapping

 $M_1 \times M_2 \to M_1 \otimes M_2, \qquad (m_1, m_2) \mapsto \tau(m_1, m_2) = m_1 \otimes m_2 \qquad (1)$

such that for any unital R-module M and for any bilinear mapping

$$M_1 \times M_2 \to M,$$
 $(m_1, m_2) \mapsto \omega(m_1, m_2)$ (2)

there exists a unique linear mapping

$$M_1 \otimes M_2 \to M \tag{3}$$

such that the following diagram commutes.

Definition 2

Suppose that M is a right module over a ring R and let G be an abelian group. We define

$$R \times \hom(M, G) \to \hom(M, G), \qquad (r, f) \mapsto rf = [m \mapsto f(mr)]. \tag{5}$$

Proposition 1

Suppose that M is a right module over a ring R and let G be an abelian group. The abelian group hom(M, G) is a left module over the ring R.

Proof. We have the following.

1. We have

$$r(f_1 + f_2) = rf_1 + rf_2 \tag{6}$$

for any element (r, f) of the set $R \times \hom(M, G)^2$ since we have

$$(r(f_1 + f_2))(m) = (f_1 + f_2)(mr) = f_1(mr) + f_2(mr) = (rf_1)(m) + (rf_2)(m) = (rf_1 + rf_2)(m)$$
(7)

for any element m.

2. We have

$$(r_1 + r_2)f = r_1f + r_2f \tag{8}$$

for any element (r, f) of the set $\mathbb{R}^2 \times \hom(M, G)$ since we have

$$((r_1 + r_2)f)(m) = f(m(r_1 + r_2)) = f(mr_1 + mr_2) = f(mr_1) + f(mr_2) = (r_1f)(m) + (r_2f)(m) = (r_1f + r_2f)(m)$$
(9)

for any element m.

3. We have

$$(r_1 r_2)f = r_1(r_2 f) \tag{10}$$

for any element (r, f) of the set $\mathbb{R}^2 \times \hom(M, G)$ since we have

$$((r_1 r_2) f)(m) = f(m(r_1 r_2)) = f((mr_1) r_2) = (r_2 f)(mr_1) = (r_1(r_2 f))(m)$$
(11)

for any element m.

Definition 3

A mapping of an abelian group into an abelian group is said to be additive if it is a homomorphism of groups.

Definition 4

Suppose that M is a right module and N is a left module over a ring R. A biadditive mapping ω of the product $M \times N$ into an abelian group is called a bihomomorphism if we have

$$\omega(mr, n) = \omega(m, rn) \tag{12}$$

for any element (r, m, n) of the set $R \times M \times N$.

Proposition 2

A right module over a ring R is a (\mathbb{Z}, R) -bimodule.

Proposition 3

A module over a commutative ring R is an (R, R)-bimodule.

Proposition 4

An abelian group is a (\mathbb{Z}, \mathbb{Z}) -bimodule.

Definition 5

Suppose that R_0 , R_1 , R_2 are rings and let M_1 and M_2 be an (R_0, R_1) -bimodule and an (R_1, R_2) -bimodule respectively. A mapping ω of the product $M_1 \times M_2$ into an (R_0, R_2) -bimodule is called a bihomomorphism if it satisfies the following. 1. The mapping

$$m_1 \mapsto \omega(m_1, m_2) \tag{13}$$

is a homomorphism of left modules over the ring R_0 for any element m_2 .

2. We have

$$\omega(m_1 r_1, m_2) = \omega(m_1, r_1 m_2) \tag{14}$$

for any element (r_1, m) of the set $R_1 \times (M_1 \times M_2)$.

3. The mapping

$$m_2 \mapsto \omega(m_1, m_2) \tag{15}$$

is a homomorphism of right modules over the ring R_2 for any element m_1 .

The definition is compatible with Definition 4. See Proposition 2 and 4.

Definition 6

A homomorphism of bimodules is a homomorphism of left and right modules.

DEFINITION 7

Suppose that

$$R_0, \qquad R_1, \qquad \ldots, \qquad R_{n-1}, \qquad R_n \qquad (16)$$

are rings and let

$$M_1, \qquad \dots, \qquad M_n \qquad (17)$$

be an (R_0, R_1) -bimodule, ..., an (R_{n-1}, R_n) -bimodule respectively. A multiadditive mapping ω of the product $M_1 \times \cdots \times M_n$ into an (R_0, R_n) -bimodule is called a multihomomorphism if it satisfies the following.

1. The mapping

$$m_1 \mapsto \omega(m_1, m_2, \dots, m_n) \tag{18}$$

is a homomorphism of left modules over the ring R_0 for any element (m_2, \ldots, m_n) .

2. We have

$$\omega(m_1, \dots, m_{k-1}, m_k r_k, m_{k+1}, m_{k+2}, \dots, m_n) = \omega(m_1, \dots, m_{k-1}, m_k, r_k m_{k+1}, m_{k+2}, \dots, m_n)$$
(19)

for any element (r_k, m) of the set $R_k \times (M_1 \times \cdots \times M_n)$ for any positive integer k < n.

3. The mapping

$$m_n \mapsto \omega(m_1, \dots, m_{n-1}, m_n) \tag{20}$$

is a homomorphism of right modules over the ring R_n for any element (m_1, \ldots, m_{n-1}) .

Remark 1

Suppose that R is a ring. Any mapping of the product $\{()\}$ into an (R, R)-bimodule is a multihomomorphism.

Remark 2

Suppose that R and S are rings and let M and N are (R, S)-bimodules. A mapping of the bimodule M into the bimodule N is a multihomomorphism if and only if it is a homomorphism of bimodules.

Proposition 5

Suppose that M is a right module and N is a left module over a ring R and let G be an abelian group. The following are equivalent for a mapping ω of the product $M \times N$ into the abelian group G.

- 1. The mapping ω is a bihomomorphism.
- 2. The mapping

$$N \to G,$$
 $n \mapsto \omega(m, n)$ (21)

is a homomorphism of groups for any element m and the mapping

$$M \to \hom(N, G), \qquad \qquad m \mapsto [n \mapsto \omega(m, n)]$$
(22)

is a homomorphism of right modules over the ring R.

3. The mapping

$$M \to G, \qquad \qquad m \mapsto \omega(m, n)$$
 (23)

is a homomorphism of groups for any element n and the mapping

$$N \to \hom(M, G), \qquad n \mapsto |m \mapsto \omega(m, n)|$$
(24)

is a homomorphism of left modules over the ring R.

Proof. Suppose that the mapping ω is a bihomomorphism. The mapping

$$N \to G,$$
 $n \mapsto \omega(m, n)$ (25)

is a homomorphism of groups for any element m since we have

$$\omega(m, n_1 + n_2) = \omega(m, n_1) + \omega(m, n_2)$$
(26)

for any element n of the set N^2 . The mapping

$$M \to \hom(N, G), \qquad \qquad m \mapsto [n \mapsto \omega(m, n)]$$
 (27)

is a homomorphism of right modules over the ring R since we have

$$\omega(m_1 + m_2, n) = \omega(m_1, n) + \omega(m_2, n)$$
(28)

for any element (m, n) of the set $M^2 \times N$ and we have

$$\omega(mr, n) = \omega(m, rn) \tag{29}$$

for any element (m, r, n) of the set $M \times R \times N$.

Suppose that the mapping

$$N \to G,$$
 $n \mapsto \omega(m, n)$ (30)

is a homomorphism of groups for any element m and the mapping

$$M \to \hom(N, G), \qquad \qquad m \mapsto [n \mapsto \omega(m, n)]$$
(31)

is a homomorphism of right modules over the ring R. The mapping

$$m \mapsto \omega(m, n) \tag{32}$$

is a homomorphism of groups of the right module M into the abelian group G for any element n of the left module N and we have

$$\omega(mr, n) = \omega(m, rn) \tag{33}$$

for any element (m, r, n) of the set $M \times R \times N$ since the mapping

$$M \to \hom(N, G), \qquad \qquad m \mapsto \lfloor n \mapsto \omega(m, n) \rfloor$$
(34)

is a homomorphism of right modules over the ring R.

Proposition 6

Suppose that M is a right module and N is a left module over a ring R and let G be an abelian group. Suppose that ω is a bihomomorphism of the product $M \times N$ into the abelian group G and let f be a homomorphism of groups of the abelian group G into an abelian group. The mapping $f \circ \omega$ is a bihomomorphism.

DEFINITION 8

A tensor product of a right module M and a left module N over a ring R is an abelian group $M \otimes N$ with a bihomomorphism

$$M \times N \to M \otimes N,$$
 $(m, n) \mapsto \tau(m, n) = m \otimes n$ (35)

such that for any abelian group G and for any bihomomorphism

$$M \times N \to G,$$
 $(m, n) \mapsto \omega(m, n)$ (36)

there exists a unique homomorphism of groups

$$M \otimes N \to G$$
 (37)

such that the following diagram commutes.

Proposition 7

Suppose that

$$M \otimes_1 N \xleftarrow{\tau_1} M \times N \xrightarrow{\tau_2} M \otimes_2 N \tag{39}$$

are tensor products of a right module M and a left module N over a ring R. There exists a unique isomorphism of groups

$$M \otimes_1 N \leftrightarrow M \otimes_2 N \tag{40}$$

such that the following diagram commutes.

$$\begin{array}{c|c} M \times N \xrightarrow{\tau_2} M \otimes_2 N \\ & & \\ & & \\ & & \\ M \otimes_1 N \end{array}$$

$$(41)$$

Proof. There exist unique homomorphisms of groups f_1 and f_2 such that the following diagrams commute.

The following diagrams commute.

We have $f_2 \circ f_1 = 1$ and we have $f_1 \circ f_2 = 1$.

Theorem 1

Suppose that M is a right module and N is a left module over a ring R. There exists a unique tensor product of the right module M and the left module N.

Proof. We write $\bar{\tau}$ for the canonical epimorphism of the free abelian group $\mathbb{Z}^{\oplus (M \times N)}$ onto the quotient group by the subgroup generated by the subset

$$\left\{ \begin{array}{l} (mr,n) - (m,rn) : (m,r,n) \in M \times R \times N \end{array} \right\} \\ \cup \left\{ \begin{array}{l} (m_1 + m_2, n) - (m_1, n) - (m_2, n) : (m_1, m_2, n) \in M \times M \times N \end{array} \right\} \\ \cup \left\{ \begin{array}{l} (m, n_1 + n_2) - (m, n_1) - (m, n_2) : (m, n_1, n_2) \in M \times N \times N \end{array} \right\}.$$

The restriction τ of the canonical epimorphism $\overline{\tau}$ to the product $M \times N$ is a bihomomorphism. Suppose that G is an abelian group and let ω be a bihomomorphism of the product $M \times N$ into the abelian group G. The bihomomorphism

 ω extends uniquely to the homomorphism of groups of the free abelian group $\mathbb{Z}^{\oplus (M\times N)}.$

$$\begin{array}{c} M \times N \longrightarrow G \\ \downarrow & \swarrow \\ \mathbb{Z}^{\oplus (M \times N)} \end{array}$$

$$\tag{44}$$

The homomorphism ω factors uniquely through the canonical epimorphism $\bar{\tau}$.

PROPOSITION 8

Suppose that M is a right module and N is a left module over a ring R. The abelian group $M \otimes N$ is the monoid generated by the subset

$$\{m \otimes n : (m,n) \in M \times N\}.$$
(45)

Proposition 9

Suppose that M_1 and N_1 are right modules and M_2 and N_2 are left modules over a ring R. Suppose that f_1 is a homomorphism of right modules over the ring R of the right module M_1 into the right module N_1 . Suppose that f_2 is a homomorphism of left modules over the ring R of the left module M_2 into the left module N_2 . There exists a unique homomorphism of groups of the abelian group $M_1 \otimes M_2$ into the abelian group $N_1 \otimes N_2$ such that the following diagram commutes.

Proposition 10

Suppose that M and N are abelian groups and let G be an abelian group. A mapping ω of the product $M \times N$ into the abelian group G is a bihomomorphism if and only if it is a bilinear mapping.

Proposition 11

Suppose that M and N are unital modules over a commutative ring R. The (R, R)-bimodule $M \otimes N$ with the bihomomorphism

$$M \times N \to M \otimes N,$$
 $(m, n) \mapsto m \otimes n$ (47)

is a tensor product in the sense of Definition 1.

Definition 9

Suppose that

$$R_0, \qquad R_1, \qquad \ldots, \qquad R_{n-1}, \qquad R_n \qquad (48)$$

are rings and let

$$M_1, \qquad \dots, \qquad M_n \qquad (49)$$

be an (R_0, R_1) -bimodule, ..., an (R_{n-1}, R_n) -bimodule respectively. A tensor product of the bimodules M_1, \ldots, M_n is an (R_0, R_n) -bimodule $\bigotimes_{k=1}^n M_k$ with a multihomomorphism

$$\prod_{k=1}^{n} M_k \to \bigotimes_{k=1}^{n} M_k, \qquad \qquad m \mapsto \tau(m) = \bigotimes_{k=1}^{n} m_k \tag{50}$$

such that for any (R_0, R_n) -bimodule M and for any multihomomorphism

$$\prod_{k=1}^{n} M_k \to M, \qquad \qquad m \mapsto \omega(m) \tag{51}$$

there exists a unique homomorphism of bimodules

$$\bigotimes_{k=1}^{n} M_k \to M \tag{52}$$

such that the following diagram commutes.

$$\begin{array}{c|c} \prod_{k=1}^{n} M_{k} \xrightarrow{\omega} M \\ \hline & & \\ \tau \\ \otimes_{k=1}^{n} M_{k} \end{array}$$

$$(53)$$

Proposition 12

Suppose that

$$R_0, \qquad R_1, \qquad \dots, \qquad R_{n-1}, \qquad R_n \qquad (54)$$

are rings and let

$$M_1, \qquad \dots, \qquad M_n \qquad (55)$$

be an (R_0, R_1) -bimodule, ..., an (R_{n-1}, R_n) -bimodule respectively. Suppose that

$$M_1 \otimes_1 \cdots \otimes_1 M_n \xleftarrow{\tau_1} M_1 \times \cdots \times M_n \xrightarrow{\tau_2} M_1 \otimes_2 \cdots \otimes_2 M_n$$
 (56)

are tensor products of the bimodules M_1, \ldots, M_n . There exists a unique isomorphism of bimodules

$$M_1 \otimes_1 \cdots \otimes_1 M_n \leftrightarrow M_1 \otimes_2 \cdots \otimes_2 M_n \tag{57}$$

such that the following diagram commutes.

Proof. There exist unique homomorphisms of bimodules f_1 and f_2 such that the following diagrams commute.

The following diagrams commute.

We have $f_2 \circ f_1 = 1$ and we have $f_1 \circ f_2 = 1$.

Proposition 13

Suppose that R_0 , R_1 , R_2 are rings and let M_1 and M_2 be an (R_0, R_1) -bimodule and an (R_1, R_2) -bimodule respectively.

- 1. The abelian group $M_1 \otimes M_2$ is an (R_0, R_2) -bimodule.
- 2. The bihomomorphism into the abelian group

$$M_1 \times M_2 \to M_1 \otimes M_2, \qquad (m_1, m_2) \mapsto m_1 \otimes m_2 \qquad (63)$$

is a bihomomorphism into the (R_0, R_2) -bimodule.

3. The (R_0, R_2) -bimodule $M_1 \otimes M_2$ with the bihomomorphism

$$M_1 \times M_2 \to M_1 \otimes M_2, \qquad (m_1, m_2) \mapsto m_1 \otimes m_2 \qquad (64)$$

is a tensor product in the sense of Definition 9.

Proof. Suppose that M is an (R_0, R_2) -bimodule and let

$$M_1 \times M_2 \to M,$$
 $(m_1, m_2) \mapsto \omega(m_1, m_2)$ (65)

be a bihomomorphism. There exists a unique homomorphism of groups

$$M_1 \otimes M_2 \to M$$
 (66)

such that the following diagram commutes since the bihomomorphism ω is a bihomomorphism into the abelian group.

$$\begin{array}{c|c}
M_1 \times M_2 & \xrightarrow{\omega} & M \\
\otimes & & & \\
M_1 \otimes M_2
\end{array}$$
(67)

The homomorphism of groups (66) is a homomorphism of (R_0, R_2) -bimodules.

Proposition 14

Suppose that M_1 and N_1 are right modules and M_2 and N_2 are left modules over a ring R. There exists a unique bihomomorphism

$$(\hom_R(M_1, N_1) \otimes_{\mathbb{Z}} \hom_R(M_2, N_2)) \times (M_1 \otimes M_2) \to N_1 \otimes N_2,$$
$$(f, m) \mapsto fm \quad (68)$$

such that we have

$$(f_1 \otimes_{\mathbb{Z}} f_2)(m_1 \otimes m_2) = f_1(m_1) \otimes f_2(m_2)$$
(69)

for any element (f, m) of the set

$$\left(\hom_R(M_1, N_1) \times \hom_R(M_2, N_2)\right) \times (M_1 \times M_2). \tag{70}$$

Remark 3

A ring R is an (R, R)-bimodule.

Proposition 15

Suppose that R_0 and R_1 are rings and let M_1 be an (R_0, R_1) -bimodule.

1. We have an isomorphism of (R_0, R_1) -bimodule

$$R_0 \otimes M_1 = M_1, \qquad r_0 \otimes m_1 = r_0 m_1$$
 (71)

provided that the left module M_1 is unital.

2. We have an isomorphism of (R_0, R_1) -bimodule

$$M_1 \otimes R_1 = M_1, \qquad m_1 \otimes r_1 = m_1 r_1$$
 (72)

provided that the right module M_1 is unital.

Proof. There exists a unique homomorphism of (R_0, R_1) -bimodules f

$$R_0 \otimes M_1 \to M_1, \qquad r_0 \otimes m_1 \mapsto r_0 m_1 \tag{73}$$

since the mapping

$$R_0 \times M_1 \to M_1, \qquad (r_0, m_1) \mapsto r_0 m_1 \qquad (74)$$

is a bihomomorphism. The homomorphism of groups

$$M_1 \to R_0 \otimes M_1, \qquad \qquad m_1 \mapsto g(m_1) = 1 \otimes m_1 \qquad (75)$$

is a homomorphism of (R_0, R_1) -bimodules since we have

$$g(r_0 m_1) = 1 \otimes (r_0 m_1) = r_0 \otimes m_1 = r_0 (1 \otimes m_1) = r_0 g(m_1)$$
(76)

and we have

$$g(m_1r_1) = 1 \otimes (m_1r_1) = (1 \otimes m_1)r_1 = g(m_1)r_1$$
(77)

for any element (r, m_1) of the set $(R_0 \times R_1) \times M_1$. The homomorphism of (R_0, R_1) -bimodules g is an epimorphism and we have

$$(f \circ g)(m_1) = f(1 \otimes m_1) = m_1 \tag{78}$$

for any element m_1 since the left module M_1 is unital.

Proposition 16

Suppose that R_0 , R_1 , R_2 , R_3 are rings and let M_1 , M_2 , M_3 be an (R_0, R_1) bimodule, an (R_1, R_2) -bimodule, an (R_2, R_3) -bimodule respectively. There exists a unique isomorphism of (R_0, R_3) -bimodules

$$(M_1 \otimes M_2) \otimes M_3 = M_1 \otimes (M_2 \otimes M_3),$$

$$(m_1 \otimes m_2) \otimes m_3 = m_1 \otimes (m_2 \otimes m_3).$$
(79)

Proof. The (R_0, R_3) -bimodule $(M_1 \otimes M_2) \otimes M_3$ is the monoid generated by the subset

$$\{(m_1 \otimes m_2) \otimes m_3 : m \in M_1 \times M_2 \times M_3\}.$$
(80)

There exists a unique mapping

$$(M_1 \otimes M_2) \times M_3 \to M_1 \otimes (M_2 \otimes M_3), \qquad (m_{12}, m_3) \mapsto \omega(m_{12}, m_3) \qquad (81)$$

such that the mapping

$$M_1 \otimes M_2 \to M_1 \otimes (M_2 \otimes M_3), \qquad \qquad m_{12} \mapsto \omega(m_{12}, m_3) \qquad (82)$$

is a homomorphism of left modules for any element m_3 and we have

$$\omega(m_1 \otimes m_2, m_3) = m_1 \otimes (m_2 \otimes m_3) \tag{83}$$

for any element m since the mapping

$$M_1 \times M_2 \to M_1 \otimes (M_2 \otimes M_3), \qquad (m_1, m_2) \mapsto m_1 \otimes (m_2 \otimes m_3)$$

$$(84)$$

is a bihomomorphism into the left module for any element m_3 . There exists a unique homomorphism of (R_0, R_3) -bimodules

$$(M_1 \otimes M_2) \otimes M_3 \to M_1 \otimes (M_2 \otimes M_3),$$

$$(m_1 \otimes m_2) \otimes m_3 \mapsto m_1 \otimes (m_2 \otimes m_3) \quad (85)$$

since the mapping ω is a bihomomorphism into the (R_0, R_3) -bimodule.

Theorem 2

Suppose that

$$R_0, R_1, \dots, R_{n-1}, R_n (86)$$

are rings and let

$$M_1, \qquad \dots, \qquad M_n \qquad (87)$$

be an (R_0, R_1) -bimodule, ..., an (R_{n-1}, R_n) -bimodule respectively.

- 1. There exists a unique tensor product of the bimodules M_1, \ldots, M_n provided that the integer n is positive.
- 2. Suppose that the integer n is positive. We have

$$\bigotimes_{k=1}^{1} M_k = M_1, \qquad \qquad \bigotimes_{k=1}^{1} m_k = m_1 \tag{88}$$

and we have

$$\bigotimes_{k=1}^{n} M_k = (\bigotimes_{k=1}^{n-1} M_k) \otimes M_n, \qquad \bigotimes_{k=1}^{n} m_k = (\bigotimes_{k=1}^{n-1} m_k) \otimes m_n \tag{89}$$

provided that we have n > 1.

3. The (R_0, R_n) -bimodule $\bigotimes_{k=1}^n M_k$ is the monoid generated by the subset

$$\left\{\bigotimes_{k=1}^{n} m_k : m \in \prod_{k=1}^{n} M_k\right\}$$
(90)

provided that the integer n is positive.

PROPOSITION 17

Suppose that

$$R_0, \qquad R_1, \qquad \dots, \qquad R_{n-1}, \qquad R_n \qquad (91)$$

are rings and let

$$M_1, \qquad \dots, \qquad M_n \qquad (92)$$

be an (R_0, R_1) -bimodule, ..., an (R_{n-1}, R_n) -bimodule respectively.

- 1. Suppose that ω is a multihomomorphism of the product $\prod_{k=1}^{n} M_k$ into an (R_0, R_n) -bimodule M and let f be a homomorphism of (R_0, R_n) bimodules of the (R_0, R_n) -bimodule M into an (R_0, R_n) -bimodule. The mapping $f \circ \omega$ is a multihomomorphism.
- 2. Suppose that M is an (R_0, R_n) -bimodule. The abelian group

$$\hom_{(R_0,R_n)}(\bigotimes_{k=1}^n M_k, M) \tag{93}$$

is the abelian group of multihomomorphisms of the product $\prod_{k=1}^{n} M_k$ into the (R_0, R_n) -bimodule M provided that the integer n is positive.

Proposition 18

Suppose that A is an algebra and M is a unital module over a commutative ring. The tensor product of the algebra A and the unital module M is an (A, A)-bimodule such that we have

$$x_1(x_2 \otimes m) = (x_1 x_2) \otimes m = (x_1 \otimes m) x_2 \tag{94}$$

for any element (x, m) of the set $A^2 \times M$.

Proposition 19

Suppose that A is an algebra with identity and M is a unital module over a commutative ring R.

- 1. The (A, A)-bimodule $A \otimes M$ is compatible with the *R*-module $A \otimes M$.
- 2. The (A, A)-bimodule $A \otimes M$ is unital.
- *Proof.* 1. We have $(r1)(x \otimes m) = ((r1)x) \otimes m = (rx) \otimes m = r(x \otimes m)$ for any element (r, x, m) of the set $R \times A \times M$.
 - 2. We have $1(x \otimes m) = x \otimes m = (x \otimes m)1$ for any element (x, m) of the set $A \times M$.

Theorem 3

Suppose that A is an algebra with identity and M_1 and M_2 are unital modules over a commutative ring R. We have an isomorphism of unital (A, A)-bimodules

$$A \otimes (M_1 \otimes M_2) = (A \otimes M_1) \otimes_A (A \otimes M_2),$$

$$(x_1 x_2) \otimes (m_1 \otimes m_2) = (x_1 \otimes m_1) \otimes_A (x_2 \otimes m_2).$$
(95)

Proof. There exists a unique bilinear mapping over the commutative ring R

$$(A \otimes M_1) \times (A \otimes M_2) \to A \otimes (M_1 \otimes M_2),$$

$$(x_1 \otimes m_1, x_2 \otimes m_2) \mapsto f(x_1 \otimes m_1, x_2 \otimes m_2) = (x_1 x_2) \otimes (m_1 \otimes m_2) \quad (96)$$

since the mapping

$$A \times M_1 \times A \times M_2 \to A \otimes (M_1 \otimes M_2),$$

$$(x_1, m_1, x_2, m_2) \mapsto (x_1 x_2) \otimes (m_1 \otimes m_2) \quad (97)$$

is bilinear over the commutative ring R. There exists a unique homomorphism of $(A,A)\mbox{-bimodules}$

$$(A \otimes M_1) \otimes_A (A \otimes M_2) \to A \otimes (M_1 \otimes M_2),$$

$$(x_1 \otimes m_1) \otimes_A (x_2 \otimes m_2) \mapsto (x_1 x_2) \otimes (m_1 \otimes m_2) \quad (98)$$

since the bilinear mapping f is a bihomomorphism into the (A, A)-bimodule. We define a mapping

$$A \times M_1 \times M_2 \to (A \otimes M_1) \otimes_A (A \otimes M_2),$$

$$(x, m_1, m_2) \mapsto g(x, m_1, m_2) = x \big((1 \otimes m_1) \otimes_A (1 \otimes m_2) \big)$$

$$= \big((1 \otimes m_1) \otimes_A (1 \otimes m_2) \big) x. \quad (99)$$

The unital (A, A)-bimodule $(A \otimes M_1) \otimes_A (A \otimes M_2)$ is a unital module over the commutative ring R such that we have

$$g(rx_1x_2, m_1, m_2) = r((x_1 \otimes m_1) \otimes_A (x_2 \otimes m_2))$$
$$= ((x_1 \otimes m_1) \otimes_A (x_2 \otimes m_2))r$$
(100)

for any element (r, x, m) of the set $R \times A^2 \times (M_1 \times M_2)$. There exists a unique homomorphism of modules over R

$$A \otimes (M_1 \otimes M_2) \to (A \otimes M_1) \otimes_A (A \otimes M_2),$$
$$x \otimes (m_1 \otimes m_2) \mapsto g(x, m_1, m_2) \quad (101)$$

since the mapping g is multilinear over the commutative ring R. The homomorphism (98) is an isomorphism since we have

$$(g \circ f)((x_1 \otimes m_1) \otimes_A (x_2 \otimes m_2)) = g((x_1 x_2) \otimes (m_1 \otimes m_2))$$
$$= (x_1 \otimes m_1) \otimes_A (x_2 \otimes m_2)$$
(102)

for any element (x, m) of the set $A^2 \times (M_1 \times M_2)$ and we have

$$(f \circ g)(x \otimes (m_1 \otimes m_2)) = x \otimes (m_1 \otimes m_2)$$
(103)

for any element (x, m) of the set $A \times (M_1 \times M_2)$.

References

[1] Pierre Antoine Grillet. Abstract Algebra. Springer, 2nd edition, 2007.