Real Analysis

Yasushi Ikeda

November 22, 2022

Contents

1	The Lebesgue Spaces	1
2	Convergence a.e. and Convergence in Measure	3
3	Complex Measures	4
4	Integration on a Locally Compact Hausdorff Space	6
5	Fourier Analysis	7

1 The Lebesgue Spaces

Suppose that (X, μ) is a measure space. Remark 1.1.

$$\mathcal{L}^{\infty}(\mu) = \left\{ f: \|f\|_{\infty} = \min\{m: |f| \le m\} = \min_{\mu(N)=0} \sup_{x \in X \setminus N} |f(x)| < \infty \right\}$$

is a *-subalgebra of the *-algebra of measurable functions.

 $Remark \ 1.2.$

$$\mathcal{L}^{p}(\mu) = \left\{ f : \|f\|_{p} = (\int |f|^{p} \, d\mu)^{1/p} < \infty \right\}$$

is a subspace of the *-algebra of measurable functions for $1\leq \forall p<\infty.$

Definition 1.1. We denote the *-algebra of equivalence classes of elements of the *-algebra of measurable functions by $M(\mu)$.

Remark 1.3. 1. $M(\mu)$ is a *-algebra.

- 2. $L^{\infty}(\mu)$ is a *-subalgebra of $M(\mu)$.
- 3. $L^{\infty}(\mu)$ is a C^* -algebra.
- 4. $L^{\infty}(\mu) = L^{1}(\mu)^{*}$ provided that (X, μ) is σ -finite.

- 5. $L^p(\mu)$ is a subspace of $M(\mu)$ for $1 \leq \forall p \leq \infty$.
- 6. $L^p(\mu)$ is a complex Banach space for $1 \leq \forall p \leq \infty$.
- 7. $L^1(\mu)$ is a closed subspace of $L^{\infty}(\mu)^*$.
- 8. $L^2(\mu)$ is a Hilbert space.

Proposition 1.1. Suppose that x and y are non-negative real numbers.

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

for real Hölder conjugates $\forall p \text{ and } \forall q$.

Suppose that f, g, f_1, f_2, \ldots are measurable functions. Remark 1.4.

$$\int |f|^p \, d\mu < \infty \Leftrightarrow \int |\operatorname{Re} f|^p \, d\mu, \int |\operatorname{Im} f|^p \, d\mu < \infty$$

for $0 < \forall p < \infty$.

Theorem 1.1 (Hölder's Inequality).

$$||fg||_1 \le ||f||_p ||g||_q$$

for extended real Hölder conjugates $\forall p \text{ and } \forall q$. Remark 1.5.

$$||fg||_1 = ||f||_1 ||g||_{\infty} \Leftrightarrow |fg| = |f|||g||_{\infty}$$

provided that f is integrable and g is essentially bounded. Corollary 1.1 (Schwarz's Inequality).

$$\|fg\|_1 \le \|f\|_2 \|g\|_2.$$

Theorem 1.2 (Minkowski's Inequality).

$$||f + g||_p \le ||f||_p + ||g||_p$$

for $1 \leq \forall p \leq \infty$.

Remark 1.6. 1. $(f_n)_{n=1}^{\infty}$ converges to f in measure μ if

$$||f||_p, ||f_1||_p, ||f_2||_p, \dots < \infty,$$
 $\lim_{n \to \infty}^p f_n = f$

for $1 \leq \forall p \leq \infty$.

2. $\lim_{n \to \infty}^{p} f_n = f$ if $(f_n)_{n=1}^{\infty}$ converges to f in measure μ and $\|f\|_p, \|f_1\|_p, \|f_2\|_p, \dots < \infty, \qquad \lim_{n \to \infty} \|f_n\|_p = \|f\|_p$

for
$$1 \leq \forall p < \infty$$
.

3. $\lim_{n \to \infty}^{p} f_n = f$ if $\lim_{n \to \infty} f_n = f$ and $\|f\|_p, \|f_1\|_p, \|f_2\|_p, \dots < \infty,$ $\lim_{n \to \infty} \|f_n\|_p = \|f\|_p$

for $1 \leq \forall p < \infty$.

2 Convergence a.e. and Convergence in Measure

Suppose that f, f', f_1, f_2, \ldots are measurable functions on a measure space (X, μ) .

Remark 2.1. $\lim_{n\to\infty} f_n = f$ if and only if

$$\mu\left(\limsup_{n \to \infty} \left\{ x : |f_n(x) - f(x)| \ge \frac{1}{m} \right\} \right) = 0$$

for $\forall m = 1, 2, \ldots$

Theorem 2.1. 1. $\lim_{n\to\infty} f_n = f$ if there exists a sequence $(\varepsilon_n)_{n=1}^{\infty}$ of positive numbers such that $\lim_{n\to\infty} \varepsilon_n = 0$ and

$$\sum_{n=1}^{\infty} \mu(\{x : |f_n(x) - f(x)| \ge \varepsilon_n\}) < \infty$$

2. $\sum_{n=1}^{\infty} f_n$ converges absolutely if there exists a sequence $(\eta_n)_{n=1}^{\infty}$ of positive numbers such that $\sum_{n=1}^{\infty} \eta_n < \infty$ and

$$\sum_{n=1}^{\infty} \mu(\{x : |f_n(x)| \ge \eta_n\}) < \infty.$$

Theorem 2.2 (Lebesgue's Dominated Convergence Theorem). If $\lim_{n\to\infty} f_n = f$ and there exists a non-negative integrable function g such that

$$\sum_{n=1}^{\infty} \mu(\{x : g(x) < |f_n(x)|\}) = 0$$

then f is integrable and $\lim_{n\to\infty}^{1} f_n = f$.

Theorem 2.3 (Dominated Convergence Theorem under Convergence in Measure). If $(f_n)_{n=1}^{\infty}$ converges to f in measure μ and there exists a non-negative integrable function g such that

$$\sum_{n=1}^{\infty} \mu(\{x : g(x) < |f_n(x)|\}) = 0$$

then f is integrable and $\lim_{n\to\infty}^{1} f_n = f$.

Definition 2.1. $(f_n)_{n=1}^{\infty}$ is said to converge almost uniformly to f if there exists a measurable set N_η such that $\mu(N_\eta) < \eta$ and

$$\lim_{n \to \infty} \sup_{x \in X \setminus N_{\eta}} |f_n(x) - f(x)| = 0$$

for $\forall \eta > 0$.

Remark 2.2. If $(f_n)_{n=1}^{\infty}$ converges almost uniformly to f then $\lim_{n\to\infty} f_n = f$.

Theorem 2.4 (D. E. Egoroff). If $\lim_{n\to\infty} f_n = f$ then $(f_n)_{n=1}^{\infty}$ converges almost uniformly to f provided that $\mu(X) < \infty$.

Definition 2.2. $(f_n)_{n=1}^{\infty}$ is said to converge to f in measure μ if

$$\lim_{n \to \infty} \mu(\{x : |f_n(x) - f(x)| \ge \varepsilon\}) = 0$$

for $\forall \varepsilon > 0$.

Remark 2.3. 1. If $(f_n)_{n=1}^{\infty}$ converges to f and f' in measure μ then f = f'.

2. $(f_n)_{n=1}^{\infty}$ converges to f in measure μ if and only if there exists N_m such that

$$\sup_{n \ge N_m} \mu\left(\left\{x : |f_n(x) - f(x)| \ge \frac{1}{m}\right\}\right) \le \frac{1}{m}$$

for $\forall m = 1, 2, \dots$

Theorem 2.5 (F. Riesz). If $(f_n)_{n=1}^{\infty}$ converges to f in measure μ then there exists a subsequence of $(f_n)_{n=1}^{\infty}$ converging to f.

Theorem 2.6 (H. Lebesgue). If $\lim_{n\to\infty} f_n = f$ then $(f_n)_{n=1}^{\infty}$ converges to f in measure μ provided that $\mu(X) < \infty$.

Definition 2.3. $(f_n)_{n=1}^{\infty}$ is called a Cauchy sequence with respect to convergence in measure μ if

$$\lim_{m,n\to\infty} \mu(\{x: |f_m(x) - f_n(x)| \ge \varepsilon\}) = 0$$

for $\forall \varepsilon > 0$.

Remark 2.4. The following are equivalent.

1. $(f_n)_{n=1}^{\infty}$ converges in measure μ .

2. $(f_n)_{n=1}^{\infty}$ is a Cauchy sequence with respect to convergence in measure μ .

3. There exists N_{δ} such that

$$\sup_{m,n \ge N_{\delta}} \mu(\{x : |f_m(x) - f_n(x)| \ge \delta\}) \le \delta$$

for $\forall \delta > 0$.

3 Complex Measures

Definition 3.1. A real-valued (resp. complex-valued) function on a σ -algebra is called a signed (resp. complex) measure if it is countably additive.

Remark 3.1. Suppose that (X, μ) is a complex measure space.

$$\lim_{n \to \infty} \mu(S_n) = \mu\left(\lim_{n \to \infty} S_n\right)$$

for a monotone sequence $\forall (S_n)_{n=1}^{\infty}$ of measurable sets.

Example 3.1. Suppose that f is an integrable function on a measure space (X, μ) . $S \mapsto \int_S f d\mu$ is a complex measure on X. $S \mapsto \int_S |f| d\mu$ is the total variation.

Remark 3.2.

$$|\operatorname{Re}\mu|, |\operatorname{Im}\mu| \le |\mu| \le |\operatorname{Re}\mu| + |\operatorname{Im}\mu|$$

for a complex measure $\forall \mu$.

Remark 3.3.

$$|\mu + \nu| \le |\mu| + |\nu|,$$
 $||\mu| - |\nu|| \le |\mu - \nu|$

for complex measures $\forall \mu$ and $\forall \nu$ on a measurable space.

Proposition 3.1. Suppose that g is an integrable (resp. a non-negative measurable) function on a measure space (X, μ) .

$$\int f d \int_{\cdot} g d\mu = \int f g d\mu$$

for a measurable function $\forall f$.

Definition 3.2. Suppose that X is a measurable space. Two complex measures μ_1 and μ_2 are said to be mutually singular and we write $\mu_1 \perp \mu_2$ if there exist two measurable sets X_1 and X_2 such that X is a disjoint union of X_1 and X_2 and $|\mu_1|(X_2) = |\mu_2|(X_1) = 0$.

Theorem 3.1 (Jordan Decomposition). Suppose that (X, μ) is a signed measure space. There exists a unique pair (μ^+, μ^-) of finite measures such that $\mu = \mu^+ - \mu^-$ and $\mu^+ \perp \mu^-$.

Remark 3.4.

$$|\mu| = \mu^+ + \mu^-$$

for a signed measure $\forall \mu$.

Definition 3.3. Suppose that (X, μ) is a signed measure space. A measurable set S is called a positive (resp. negative) set if (S, μ) (resp. $(S, -\mu)$) is a measure space.

Remark 3.5. A union of countable positive (resp. negative) sets is a positive (resp. negative) set.

Theorem 3.2 (Hahn Decomposition). A Hahn decomposition of a signed measure space exists.

Theorem 3.3 (Lebesgue Decomposition). Suppose that (X, μ) is a σ -finite measure space and that ν is a complex (resp. finite) measure on X. There exists a unique pair (ν_1, ν_2) of complex (resp. finite) measures satisfying the following.

- 1. $\nu = \nu_1 + \nu_2$.
- 2. ν_1 is absolutely continuous with respect to μ .
- 3. ν_2 and μ are mutually singular.

Theorem 3.4. The set of complex measures on a measurable space is a complex Banach space.

Theorem 3.5 (Radon-Nikodym). $L^1(X, \mu)$ is the Banach space of complex measures on X absolutely continuous with respect to μ for a σ -finite measure space $\forall (X, \mu)$.

Proposition 3.2. Suppose that f is an integrable function on a probability space (X, μ) .

$$\mu \bigg(f^{-1} \bigg(\overline{\bigg\{ \int_S f \, d\mu : \mu(S) > 0 \bigg\}} \bigg) \bigg) = 1.$$

Proposition 3.3. The Radon-Nikodym derivative of a complex measure with respect to the total variation is of modulus one.

Proposition 3.4. Suppose that X is a measurable space. A complex measure ν on X is absolutely continuous with respect to a measure μ on X if and only if $\inf_{\delta>0} \sup_{\mu(S)<\delta} |\nu(S)| = 0$.

4 Integration on a Locally Compact Hausdorff Space

Definition 4.1. A measure on a locally compact Hausdorff space that is finite on the set of compact sets is called a Borel measure.

Definition 4.2. A Borel measure μ on a locally compact Hausdorff space is called a Radon measure if it satisfies the following.

1. μ is inner regular for any open set.

2. μ is outer regular.

Remark 4.1. A Radon measure on a locally compact Hausdorff space is inner regular for any Borel set of finite measure.

Theorem 4.1 (Monotone Convergence Theorem). Suppose that μ is a Radon measure on a locally compact Hausdorff space and that $(f_i)_i$ is an increasing net of non-negative extended real-valued lower semi-continuous functions on the space.

$$\int \sup_{i} f_i \, d\mu = \sup_{i} \int f_i \, d\mu.$$

Proposition 4.1. If μ is a Radon measure on a locally compact Hausdorff space then $\int_{\cdot} f d\mu$ is a Radon measure on the space for a strictly positive continuous function $\forall f$ on the space.

Definition 4.3. A signed measure μ on a locally compact Hausdorff space is called a signed Radon measure if μ^+ and μ^- are Radon measures.

Definition 4.4. A complex measure μ on a locally compact Hausdorff space is called a complex Radon measure if Re μ and Im μ are signed Radon measures.

Remark 4.2. The total variation of a complex Radon measure on a locally compact Hausdorff space is a Radon measure.

Theorem 4.2. A Borel measure on a locally compact Hausdorff space is a Radon measure if any open set is σ -compact.

Proposition 4.2. A complex measure on a locally compact Hausdorff space that is absolutely continuous with respect to a finite Radon measure is a complex Radon measure.

Theorem 4.3. Suppose that f is an integrable function with respect to a finite Radon measure on a compact Hausdorff space. There exists a sequence $(f_n)_{n=1}^{\infty}$ of continuous functions such that $\lim_{n\to\infty} ||f_n - f||_1 = 0$.

Remark 4.3. There exists the largest open null set $X \setminus \text{supp } \mu$ for a measure $\forall \mu$ on a second countable topological space X.

5 Fourier Analysis

Theorem 5.1. The convolution of rapidly decreasing functions is a rapidly decreasing function and the Fourier transform of the convolution is the product of the Fourier transforms.

Proposition 5.1. There exists a non-zero real-valued odd compactly supported smooth function on \mathbb{R}^d if d is positive.

Theorem 5.2. There exists a non-zero non-negative rapidly decreasing function on \mathbb{R}^d such that the Fourier transform is non-negative and compactly supported.

Proof. We may assume that d is positive. There exists a rapidly decreasing function f such that the Fourier transform of f is non-zero, real-valued, odd, and compactly supported. $|f * \bar{f}|^2$ is a rapidly decreasing function satisfying the desired properties.

Theorem 5.3. There exists a sequence $(f_n)_{n=1}^{\infty}$ of non-zero non-negative rapidly decreasing functions on \mathbb{R}^d satisfying the following.

1.

$$\int f_n(x) \, dx = 1$$

and the Fourier transform of f_n is non-negative and compactly supported for $\forall n$.

$$\lim_{n \to \infty} \int f_n(x) g(x) \, dx = g(0)$$

for a bounded continuous function $\forall g \text{ on } \mathbb{R}^d$.

Proof. We may assume that d is positive. There exists a non-zero non-negative rapidly decreasing function f on \mathbb{R}^d such that the Fourier transform is non-negative and compactly supported. We may assume that

$$\int f(x) \, dx = 1.$$

We define $f_n(x) = nf(n^{1/d}x)$. $(f_n)_{n=1}^{\infty}$ is a sequence of functions satisfying the desired properties.

References

- [1] Loukas Grafakos. *Classical Fourier analysis*. Number 249 in Graduate texts in mathematics. Springer, 2nd edition, 2008.
- [2] J. (James) Yeh. Real analysis : theory of measure and integration. World Scientific, 2nd edition, 2006.

2.