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1 The Lebesgue Spaces

Suppose that (X, p) is a measure space.
Remark 1.1.

L%(n) = {f: [flloc = min{m = [f] Sm}zug]nvig sup |f ()] <00}

)=0zex\N

is a *-subalgebra of the *-algebra of measurable functions.
Remark 1.2.

)= { 15101 = (1P du > < o |
is a subspace of the *-algebra of measurable functions for 1 < Vp < oco.

Definition 1.1. We denote the *-algebra of equivalence classes of elements of
the *-algebra of measurable functions by M (u).

Remark 1.3. 1. M(p) is a *-algebra.
2. L*>®(p) is a *-subalgebra of M (u).
3. L>®(u) is a C*-algebra.

4. L>=(p) = L'(n)* provided that (X, ) is o-finite.



5. LP(u) is a subspace of M(u) for 1 < Vp < oo.

6. LP(u) is a complex Banach space for 1 < Vp < co.
7. L'(u) is a closed subspace of L>(u)*.

8. L?(u) is a Hilbert space.

Proposition 1.1. Suppose that x and y are non-negative real numbers.

P a
ry < T + L
q
for real Hélder conjugates Vp and Yq.
Suppose that f, g, f1, f2, ... are measurable functions.

Remark 1.4.
/|f|pdp<oo«t>/\Ref|pd,u,/|Imf|pd,u<oo

for 0 < Vp < oo.
Theorem 1.1 (Holder’s Inequality).

1fglly < £ lpllgllq
for extended real Holder conjugates ¥Vp and Vq.

Remark 1.5.
1£9llx = [l fllxllgllee < 1 fgl = [f1llgllc
provided that f is integrable and g is essentially bounded.

Corollary 1.1 (Schwarz’s Inequality).
£l < [Ifll2llgll2-
Theorem 1.2 (Minkowski’s Inequality).

If+ally < 1fllp + lgllp
for 1 <Vp < oco.

Remark 1.6. 1. (fn)22, converges to f in measure p if
P
1l 12l ol < oo, lim £, = f

for 1 < Vp < oo.
2. UmP | fn = fif (fn)22, converges to f in measure p and
1l 11l el - < o, i [ full, = 11,
for 1 <Vp < oo.
3. lmP | fn = fiflim, o fr = f and
1l 1l 1 el - < o, Tim [ falls = /1l

for 1 <Vp < .



2 Convergence a.e. and Convergence in Mea-
sure
Suppose that f, f’, fi, fe, ... are measurable functions on a measure space

(X, ).
Remark 2.1. lim,, o frn = f if and only if

(tmsupf o 17,60) = 0] = - ) =0

n—oo
for vm=1,2,...

Theorem 2.1. 1. limy, oo fno = f if there exists a sequence (e,,)22, of pos-
itive numbers such that lim, _, €, = 0 and

o0

S u({a s falw) = f@)] = en }) < 0.

n=1

2. 3707 | fn converges absolutely if there exists a sequence (n,)5%; of positive
numbers such that Y~ 1, < 0o and

> n{ @ | fal@)] = na }) < 0.

Theorem 2.2 (Lebesgue’s Dominated Convergence Theorem). Iflim,, oo fr =
f and there exists a non-negative integrable function g such that

S u{z:g(@) < |fal@)}) =0

then f is integrable and limiﬁoo fn=1f.

Theorem 2.3 (Dominated Convergence Theorem under Convergence in Mea-
sure). If (fn)22, converges to f in measure  and there exists a non-negative
integrable function g such that

Y ou{a:glz) < |fal@)}) =0
n=1
then f is integrable and limiﬁoo fn=1f.

Definition 2.1. ()52, is said to converge almost uniformly to f if there exists
a measurable set N, such that p(N,) < n and

lim sup |fn(z)— f(z)]=0

N0 ze X\N,

for Vn > 0.



Remark 2.2. If (f,)22; converges almost uniformly to f then lim, , fn = f.

Theorem 2.4 (D. E. Egoroff). Iflim,,_ o frn = f then (f,)52, converges almost
uniformly to f provided that u(X) < oo.

Definition 2.2. (f,)22, is said to converge to f in measure p if

i p({z:[fu(z) - flx)] = }) =0

n—00
for Ve > 0.
Remark 2.3. 1. If (f,)22, converges to f and f’ in measure u then f = f’.

2. (fn)p converges to f in measure u if and only if there exists N,, such

that 1 1

: - > — )< —

s ({1 - g1z L) <1
forYm=1,2,...

Theorem 2.5 (F. Riesz). If ()02, converges to f in measure (i then there
exists a subsequence of (f,)52, converging to f.

Theorem 2.6 (H. Lebesgue). If lim,, o0 frn = f then (fn)2, converges to f
in measure p provided that p(X) < oo.

Definition 2.3. (f,)52, is called a Cauchy sequence with respect to conver-
gence in measure p if

im p({z:[fm(z) = fu(z)| 2€}) =0

m,n—o0
for Ve > 0.
Remark 2.4. The following are equivalent.

1. (fn)S2, converges in measure p.

2. (fn)22; is a Cauchy sequence with respect to convergence in measure p.

3. There exists N such that

sup p({a: |fnl) = fula)] 2 63) <6

m,n>Ns

for V§ > 0.

3 Complex Measures

Definition 3.1. A real-valued (resp. complex-valued) function on a o-algebra
is called a signed (resp. complex) measure if it is countably additive.



Remark 3.1. Suppose that (X, p) is a complex measure space.

b 50— 5.

n—r oo

for a monotone sequence Y(5,)52; of measurable sets.

Ezample 3.1. Suppose that f is an integrable function on a measure space
(X,p). S~ [gfduis a complex measure on X. S — [|f|dp is the total
variation.

Remark 3.2.

[Re ], JTm ] < |p1] < [Re p] + [T g
for a complex measure V.
Remark 3.3.

I+ v| < pl+ v, el = ]l < p—v|
for complex measures Yy and Vv on a measurable space.

Proposition 3.1. Suppose that g is an integrable (resp. a non-negative mea-
surable) function on a measure space (X, ).

[t fodn= [ soin

for a measurable function Vf.

Definition 3.2. Suppose that X is a measurable space. Two complex measures
w1 and po are said to be mutually singular and we write py L po if there exist
two measurable sets X7 and Xs such that X is a disjoint union of X; and X,
and |p1](X2) = |p2|(X1) = 0.

Theorem 3.1 (Jordan Decomposition). Suppose that (X, i) is a signed measure
space. There erists a unique pair (u*, =) of finite measures such that p =
put —p and pt LopT.
Remark 3.4.

lul=p* +u”

for a signed measure V.

Definition 3.3. Suppose that (X, ) is a signed measure space. A measurable
set S is called a positive (resp. negative) set if (S, u) (resp. (S, —p)) is a measure
space.

Remark 3.5. A union of countable positive (resp. negative) sets is a positive
(resp. negative) set.

Theorem 3.2 (Hahn Decomposition). A Hahn decomposition of a signed mea-
sure space exists.



Theorem 3.3 (Lebesgue Decomposition). Suppose that (X,u) is a o-finite
measure space and that v is a complex (resp. finite) measure on X. There
exists a unique pair (v1,v2) of complex (resp. finite) measures satisfying the
following.

1. v=vi + vs.
2. v1 18 absolutely continuous with respect to .
3. vy and p are mutually singular.

Theorem 3.4. The set of complex measures on a measurable space is a complex
Banach space.

Theorem 3.5 (Radon-Nikodym). L'(X,pu) is the Banach space of complex
measures on X absolutely continuous with respect to u for a o-finite measure
space Y(X, ).

Proposition 3.2. Suppose that f is an integrable function on a probability space

()

Proposition 3.3. The Radon-Nikodym derivative of a complex measure with
respect to the total variation is of modulus one.

Proposition 3.4. Suppose that X is a measurable space. A compler measure
v on X is absolutely continuous with respect to a measure p on X if and only

if infs>0sup,(5) <5V (S)| = 0.

4 Integration on a Locally Compact Hausdorff
Space

Definition 4.1. A measure on a locally compact Hausdorff space that is finite

on the set of compact sets is called a Borel measure.

Definition 4.2. A Borel measure i on a locally compact Hausdorff space is
called a Radon measure if it satisfies the following.

1. w is inner regular for any open set.
2. p is outer regular.

Remark 4.1. A Radon measure on a locally compact Hausdorff space is inner
regular for any Borel set of finite measure.

Theorem 4.1 (Monotone Convergence Theorem). Suppose that 1 is a Radon
measure on a locally compact Hausdorff space and that (f;); is an increasing
net of non-negative extended real-valued lower semi-continuous functions on the

space.
/ sup f; dy = sup / Jidp.



Proposition 4.1. If u is a Radon measure on a locally compact Hausdorff space
then [ fdp is a Radon measure on the space for a strictly positive continuous
function Vf on the space.

Definition 4.3. A signed measure p on a locally compact Hausdorff space is
called a signed Radon measure if u* and p~ are Radon measures.

Definition 4.4. A complex measure p on a locally compact Hausdorff space is
called a complex Radon measure if Re ¢ and Im p are signed Radon measures.

Remark 4.2. The total variation of a complex Radon measure on a locally com-
pact Hausdorff space is a Radon measure.

Theorem 4.2. A Borel measure on a locally compact Hausdorff space is a
Radon measure if any open set is o-compact.

Proposition 4.2. A complex measure on a locally compact Hausdorff space
that is absolutely continuous with respect to a finite Radon measure is a complex
Radon measure.

Theorem 4.3. Suppose that f is an integrable function with respect to a finite
Radon measure on a compact Hausdorff space. There exists a sequence (fr)52 4
of continuous functions such that lim, | fn — f|l1 = 0.

Remark 4.3. There exists the largest open null set X \ supp u for a measure Vpu
on a second countable topological space X.

5 Fourier Analysis

Theorem 5.1. The convolution of rapidly decreasing functions is a rapidly
decreasing function and the Fourier transform of the convolution is the product
of the Fourier transforms.

Proposition 5.1. There exists a non-zero real-valued odd compactly supported
smooth function on R if d is positive.

Theorem 5.2. There exists a non-zero non-negative rapidly decreasing function
on RY such that the Fourier transform is non-negative and compactly supported.

Proof. We may assume that d is positive. There exists a rapidly decreasing
function f such that the Fourier transform of f is non-zero, real-valued, odd,
and compactly supported. |f* f|? is a rapidly decreasing function satisfying the
desired properties. O

Theorem 5.3. There exists a sequence ( f,)>2, of non-zero non-negative rapidly
decreasing functions on R satisfying the following.
1.
/ fo(z)dx =1

and the Fourier transform of f, is non-negative and compactly supported
for Vn.



lim [ fn(2)g(z)dz = g(0)
for a bounded continuous function Yg on R?.

Proof. We may assume that d is positive. There exists a non-zero non-negative
rapidly decreasing function f on R? such that the Fourier transform is non-
negative and compactly supported. We may assume that

/f(m) o =1,

We define f,,(z) = nf(n'/%x). (f,)2, is a sequence of functions satisfying the
desired properties. O

References

[1] Loukas Grafakos. Classical Fourier analysis. Number 249 in Graduate texts
in mathematics. Springer, 2nd edition, 2008.

[2] J. (James) Yeh. Real analysis : theory of measure and integration. World
Scientific, 2nd edition, 2006.



	The Lebesgue Spaces
	Convergence a.e. and Convergence in Measure
	Complex Measures
	Integration on a Locally Compact Hausdorff Space
	Fourier Analysis

