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1 The Lebesgue Spaces

Suppose that (X,µ) is a measure space.

Remark 1.1.

L∞(µ) =

{
f : ‖f‖∞ = min{m : |f | ≤ m } = min

µ(N)=0
sup

x∈X\N
|f(x)| <∞

}
is a ∗-subalgebra of the ∗-algebra of measurable functions.

Remark 1.2.

Lp(µ) =

{
f : ‖f‖p = (

∫
|f |p dµ)1/p <∞

}
is a subspace of the ∗-algebra of measurable functions for 1 ≤ ∀p <∞.

Definition 1.1. We denote the ∗-algebra of equivalence classes of elements of
the ∗-algebra of measurable functions by M(µ).

Remark 1.3. 1. M(µ) is a ∗-algebra.

2. L∞(µ) is a ∗-subalgebra of M(µ).

3. L∞(µ) is a C∗-algebra.

4. L∞(µ) = L1(µ)∗ provided that (X,µ) is σ-finite.
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5. Lp(µ) is a subspace of M(µ) for 1 ≤ ∀p ≤ ∞.

6. Lp(µ) is a complex Banach space for 1 ≤ ∀p ≤ ∞.

7. L1(µ) is a closed subspace of L∞(µ)∗.

8. L2(µ) is a Hilbert space.

Proposition 1.1. Suppose that x and y are non-negative real numbers.

xy ≤ xp

p
+
yq

q

for real Hölder conjugates ∀p and ∀q.
Suppose that f , g, f1, f2, . . . are measurable functions.

Remark 1.4. ∫
|f |p dµ <∞⇔

∫
|Re f |p dµ,

∫
|Im f |p dµ <∞

for 0 < ∀p <∞.

Theorem 1.1 (Hölder’s Inequality).

‖fg‖1 ≤ ‖f‖p‖g‖q
for extended real Hölder conjugates ∀p and ∀q.
Remark 1.5.

‖fg‖1 = ‖f‖1‖g‖∞ ⇔ |fg| = |f |‖g‖∞
provided that f is integrable and g is essentially bounded.

Corollary 1.1 (Schwarz’s Inequality).

‖fg‖1 ≤ ‖f‖2‖g‖2.

Theorem 1.2 (Minkowski’s Inequality).

‖f + g‖p ≤ ‖f‖p + ‖g‖p
for 1 ≤ ∀p ≤ ∞.

Remark 1.6. 1. (fn)∞n=1 converges to f in measure µ if

‖f‖p, ‖f1‖p, ‖f2‖p, · · · <∞,
p

lim
n→∞

fn = f

for 1 ≤ ∀p ≤ ∞.

2. limp
n→∞ fn = f if (fn)∞n=1 converges to f in measure µ and

‖f‖p, ‖f1‖p, ‖f2‖p, · · · <∞, lim
n→∞

‖fn‖p = ‖f‖p

for 1 ≤ ∀p <∞.

3. limp
n→∞ fn = f if limn→∞ fn = f and

‖f‖p, ‖f1‖p, ‖f2‖p, · · · <∞, lim
n→∞

‖fn‖p = ‖f‖p

for 1 ≤ ∀p <∞.
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2 Convergence a.e. and Convergence in Mea-
sure

Suppose that f , f ′, f1, f2, . . . are measurable functions on a measure space
(X,µ).

Remark 2.1. limn→∞ fn = f if and only if

µ

(
lim sup
n→∞

{
x : |fn(x)− f(x)| ≥ 1

m

})
= 0

for ∀m = 1, 2, . . .

Theorem 2.1. 1. limn→∞ fn = f if there exists a sequence (εn)∞n=1 of pos-
itive numbers such that limn→∞ εn = 0 and

∞∑
n=1

µ({x : |fn(x)− f(x)| ≥ εn }) <∞.

2.
∑∞
n=1 fn converges absolutely if there exists a sequence (ηn)∞n=1 of positive

numbers such that
∑∞
n=1 ηn <∞ and

∞∑
n=1

µ({x : |fn(x)| ≥ ηn }) <∞.

Theorem 2.2 (Lebesgue’s Dominated Convergence Theorem). If limn→∞ fn =
f and there exists a non-negative integrable function g such that

∞∑
n=1

µ({x : g(x) < |fn(x)| }) = 0

then f is integrable and lim1
n→∞ fn = f .

Theorem 2.3 (Dominated Convergence Theorem under Convergence in Mea-
sure). If (fn)∞n=1 converges to f in measure µ and there exists a non-negative
integrable function g such that

∞∑
n=1

µ({x : g(x) < |fn(x)| }) = 0

then f is integrable and lim1
n→∞ fn = f .

Definition 2.1. (fn)∞n=1 is said to converge almost uniformly to f if there exists
a measurable set Nη such that µ(Nη) < η and

lim
n→∞

sup
x∈X\Nη

|fn(x)− f(x)| = 0

for ∀η > 0.
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Remark 2.2. If (fn)∞n=1 converges almost uniformly to f then limn→∞ fn = f .

Theorem 2.4 (D. E. Egoroff). If limn→∞ fn = f then (fn)∞n=1 converges almost
uniformly to f provided that µ(X) <∞.

Definition 2.2. (fn)∞n=1 is said to converge to f in measure µ if

lim
n→∞

µ({x : |fn(x)− f(x)| ≥ ε }) = 0

for ∀ε > 0.

Remark 2.3. 1. If (fn)∞n=1 converges to f and f ′ in measure µ then f = f ′.

2. (fn)∞n=1 converges to f in measure µ if and only if there exists Nm such
that

sup
n≥Nm

µ

({
x : |fn(x)− f(x)| ≥ 1

m

})
≤ 1

m

for ∀m = 1, 2, . . .

Theorem 2.5 (F. Riesz). If (fn)∞n=1 converges to f in measure µ then there
exists a subsequence of (fn)∞n=1 converging to f .

Theorem 2.6 (H. Lebesgue). If limn→∞ fn = f then (fn)∞n=1 converges to f
in measure µ provided that µ(X) <∞.

Definition 2.3. (fn)∞n=1 is called a Cauchy sequence with respect to conver-
gence in measure µ if

lim
m,n→∞

µ({x : |fm(x)− fn(x)| ≥ ε }) = 0

for ∀ε > 0.

Remark 2.4. The following are equivalent.

1. (fn)∞n=1 converges in measure µ.

2. (fn)∞n=1 is a Cauchy sequence with respect to convergence in measure µ.

3. There exists Nδ such that

sup
m,n≥Nδ

µ({x : |fm(x)− fn(x)| ≥ δ }) ≤ δ

for ∀δ > 0.

3 Complex Measures

Definition 3.1. A real-valued (resp. complex-valued) function on a σ-algebra
is called a signed (resp. complex) measure if it is countably additive.
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Remark 3.1. Suppose that (X,µ) is a complex measure space.

lim
n→∞

µ(Sn) = µ
(

lim
n→∞

Sn

)
for a monotone sequence ∀(Sn)∞n=1 of measurable sets.

Example 3.1. Suppose that f is an integrable function on a measure space
(X,µ). S 7→

∫
S
f dµ is a complex measure on X. S 7→

∫
S
|f | dµ is the total

variation.

Remark 3.2.
|Reµ|, |Imµ| ≤ |µ| ≤ |Reµ|+ |Imµ|

for a complex measure ∀µ.

Remark 3.3.

|µ+ ν| ≤ |µ|+ |ν|, ||µ| − |ν|| ≤ |µ− ν|

for complex measures ∀µ and ∀ν on a measurable space.

Proposition 3.1. Suppose that g is an integrable (resp. a non-negative mea-
surable) function on a measure space (X,µ).∫

f d

∫
·
g dµ =

∫
fg dµ

for a measurable function ∀f .

Definition 3.2. Suppose that X is a measurable space. Two complex measures
µ1 and µ2 are said to be mutually singular and we write µ1 ⊥ µ2 if there exist
two measurable sets X1 and X2 such that X is a disjoint union of X1 and X2

and |µ1|(X2) = |µ2|(X1) = 0.

Theorem 3.1 (Jordan Decomposition). Suppose that (X,µ) is a signed measure
space. There exists a unique pair (µ+, µ−) of finite measures such that µ =
µ+ − µ− and µ+ ⊥ µ−.

Remark 3.4.
|µ| = µ+ + µ−

for a signed measure ∀µ.

Definition 3.3. Suppose that (X,µ) is a signed measure space. A measurable
set S is called a positive (resp. negative) set if (S, µ) (resp. (S,−µ)) is a measure
space.

Remark 3.5. A union of countable positive (resp. negative) sets is a positive
(resp. negative) set.

Theorem 3.2 (Hahn Decomposition). A Hahn decomposition of a signed mea-
sure space exists.
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Theorem 3.3 (Lebesgue Decomposition). Suppose that (X,µ) is a σ-finite
measure space and that ν is a complex (resp. finite) measure on X. There
exists a unique pair (ν1, ν2) of complex (resp. finite) measures satisfying the
following.

1. ν = ν1 + ν2.

2. ν1 is absolutely continuous with respect to µ.

3. ν2 and µ are mutually singular.

Theorem 3.4. The set of complex measures on a measurable space is a complex
Banach space.

Theorem 3.5 (Radon-Nikodym). L1(X,µ) is the Banach space of complex
measures on X absolutely continuous with respect to µ for a σ-finite measure
space ∀(X,µ).

Proposition 3.2. Suppose that f is an integrable function on a probability space
(X,µ).

µ

(
f−1

({∫
S

f dµ : µ(S) > 0

}))
= 1.

Proposition 3.3. The Radon-Nikodym derivative of a complex measure with
respect to the total variation is of modulus one.

Proposition 3.4. Suppose that X is a measurable space. A complex measure
ν on X is absolutely continuous with respect to a measure µ on X if and only
if infδ>0 supµ(S)<δ|ν(S)| = 0.

4 Integration on a Locally Compact Hausdorff
Space

Definition 4.1. A measure on a locally compact Hausdorff space that is finite
on the set of compact sets is called a Borel measure.

Definition 4.2. A Borel measure µ on a locally compact Hausdorff space is
called a Radon measure if it satisfies the following.

1. µ is inner regular for any open set.

2. µ is outer regular.

Remark 4.1. A Radon measure on a locally compact Hausdorff space is inner
regular for any Borel set of finite measure.

Theorem 4.1 (Monotone Convergence Theorem). Suppose that µ is a Radon
measure on a locally compact Hausdorff space and that (fi)i is an increasing
net of non-negative extended real-valued lower semi-continuous functions on the
space. ∫

sup
i
fi dµ = sup

i

∫
fi dµ.
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Proposition 4.1. If µ is a Radon measure on a locally compact Hausdorff space
then

∫
· f dµ is a Radon measure on the space for a strictly positive continuous

function ∀f on the space.

Definition 4.3. A signed measure µ on a locally compact Hausdorff space is
called a signed Radon measure if µ+ and µ− are Radon measures.

Definition 4.4. A complex measure µ on a locally compact Hausdorff space is
called a complex Radon measure if Reµ and Imµ are signed Radon measures.

Remark 4.2. The total variation of a complex Radon measure on a locally com-
pact Hausdorff space is a Radon measure.

Theorem 4.2. A Borel measure on a locally compact Hausdorff space is a
Radon measure if any open set is σ-compact.

Proposition 4.2. A complex measure on a locally compact Hausdorff space
that is absolutely continuous with respect to a finite Radon measure is a complex
Radon measure.

Theorem 4.3. Suppose that f is an integrable function with respect to a finite
Radon measure on a compact Hausdorff space. There exists a sequence (fn)∞n=1

of continuous functions such that limn→∞‖fn − f‖1 = 0.

Remark 4.3. There exists the largest open null set X \ suppµ for a measure ∀µ
on a second countable topological space X.

5 Fourier Analysis

Theorem 5.1. The convolution of rapidly decreasing functions is a rapidly
decreasing function and the Fourier transform of the convolution is the product
of the Fourier transforms.

Proposition 5.1. There exists a non-zero real-valued odd compactly supported
smooth function on Rd if d is positive.

Theorem 5.2. There exists a non-zero non-negative rapidly decreasing function
on Rd such that the Fourier transform is non-negative and compactly supported.

Proof. We may assume that d is positive. There exists a rapidly decreasing
function f such that the Fourier transform of f is non-zero, real-valued, odd,
and compactly supported. |f ∗ f̄ |2 is a rapidly decreasing function satisfying the
desired properties.

Theorem 5.3. There exists a sequence (fn)∞n=1 of non-zero non-negative rapidly
decreasing functions on Rd satisfying the following.

1. ∫
fn(x) dx = 1

and the Fourier transform of fn is non-negative and compactly supported
for ∀n.
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2.

lim
n→∞

∫
fn(x)g(x) dx = g(0)

for a bounded continuous function ∀g on Rd.

Proof. We may assume that d is positive. There exists a non-zero non-negative
rapidly decreasing function f on Rd such that the Fourier transform is non-
negative and compactly supported. We may assume that∫

f(x) dx = 1.

We define fn(x) = nf(n1/dx). (fn)∞n=1 is a sequence of functions satisfying the
desired properties.
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