Quasiderivations and Quantum

 Mishchenko-Fomenko Construction
Yasushi Ikeda

Moscow State University

July 28, 2023
QTS12

Outline

Quantum M-F
Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

1 Introduction

2 Quasiderivation and Conjecture

3 Foundamental Theorem and Corollary

4 Second-Order Quasiderivations and Matrix Equation

5 Conclusion

Poisson Bracket on the Dual Space of a Lie Algebra

- We are going to investigate a quantum analogue of the theorem of A. Mishchenko and A. Fomenko.
- The Lie bracket of a finite dimensional real Lie algebra g extends uniquely to a Poisson bracket on the symmetric algebra $S(g)$. The Poisson bracket is called the Kirillov-Kostant bracket.

$$
\begin{array}{cc}
S(g) \times S(g) & \xrightarrow{\text { Poisson bracket }} S(g) \\
\uparrow & \uparrow \\
g \times g & \xrightarrow{\text { Lie bracket }} \\
& \\
\hline
\end{array}
$$

Classical Theorem of A. Mishchenko and A. Fomenko

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

The classical theorem of A. Mishchenko and A. Fomenko is the following. ${ }^{1}$

Theorem (A. Mishchenko and A. Fomenko, 1978)

Suppose that ∂_{ξ} is a constant vector field on the dual space g^{*}. We have

$$
\left\{\partial_{\xi}^{m}(x), \partial_{\xi}^{n}(y)\right\}=0
$$

for any m and n and for any Poisson central elements x and y of the symmetric algebra $S(g)$.

[^0]
Classical Theorem of A. Mishchenko and A. Fomenko

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We are going to investigate a quantum analogue of this theorem.

1 The symmetric algebra $S(g)$ should be replaced by the universal enveloping algebra $U(g)$.
2 The Poisson bracket should be replaced by the commutator on the universal enveloping algebra $U(g)$.
3 We need to find a "derivation" of the universal enveloping algebra $U(g)$.

Quantum Analogue of A. Mishchenko and A.

 FomenkoQuantum M-F
Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Let us consider $g=g /(d, \mathbb{C})$.
■ Let

$$
e=\left(\begin{array}{ccc}
e_{1}^{1} & \ldots & e_{d}^{1} \\
\ldots & \ldots & \cdots \\
e_{1}^{d} & \ldots & e_{d}^{d}
\end{array}\right) \in M(d, g /(d, \mathbb{C}))
$$

where e_{j}^{i} form a linear basis of $g l(d, \mathbb{C})$ and satisfy the commutation relations $\left[e_{j}^{i}, e_{l}^{k}\right]=e_{j}^{k} \delta_{l}^{i}-\delta_{j}^{k} e_{l}^{i}$.

- A constant vector field on the dual space is given by

$$
\partial_{\xi}=\operatorname{tr}(\xi \partial), \quad \partial_{j}^{i}=\frac{\partial}{\partial e_{i}^{j}}
$$

where ξ is a numerical matrix.

Quantum Analogue of A. Mishchenko and A. Fomenko

Quantum M-F
Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Remark

The derivation

$$
\operatorname{Sgl}(d, \mathbb{C}) \rightarrow M(d, \operatorname{Sgl}(d, \mathbb{C})), \quad x \mapsto \partial x
$$

is a unique linear mapping satisfying the following.
1 We have $\partial \nu=0$ for any scalar ν.
2 We have $\partial \operatorname{tr}(\xi e)=\xi$ for any numerical matrix ξ.
3 We have the Leibniz rule

$$
\partial(x y)=(\partial x) y+x(\partial y)
$$

for any elements x and y of the symmetric algebra.

Quantum Analogue of A. Mishchenko and A.

 FomenkoQuantum M-F
Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Let $x=\left(\begin{array}{ccc}x_{1}^{1} & \ldots & x_{d}^{1} \\ \ldots & \cdots & \\ x_{1}^{d} & \ldots & x_{d}^{d}\end{array}\right)$ be a d by d matrix. We write

$$
x^{i}=\left(\begin{array}{lll}
x_{1}^{i} & \ldots & x_{d}^{i}
\end{array}\right), \quad x_{j}=\left(\begin{array}{c}
x_{j}^{1} \\
\vdots \\
x_{j}^{d}
\end{array}\right)
$$

The d by d identity matrix is denoted by δ. We have

$$
\delta^{i}=\left(\begin{array}{lll}
\ldots & 1 & \ldots
\end{array}\right), \quad \delta_{j}=\left(\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right), \quad \delta_{j} \delta^{i}=\left(\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & 1 & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right) .
$$

Quantum Analogue of A. Mishchenko and A. Fomenko

Quantum M-F

- There is no such a derivation on the universal enveloping algebra $U g l(d, \mathbb{C})$ since we obtain a contradiction

$$
\begin{aligned}
0 & =\partial\left(e_{j}^{i} e_{l}^{k}-e_{l}^{k} e_{j}^{i}\right) & & \text { (Leibniz rule) } \\
& =\partial\left(e_{j}^{k} \delta_{l}^{i}-\delta_{j}^{k} e_{l}^{i}\right) & & \text { (commutation relation) } \\
& =\delta_{j} \delta^{k} \delta_{l}^{i}-\delta_{j}^{k} \delta_{l} \delta^{i} & & \text { (second conditon) } \\
& \neq 0 & &
\end{aligned}
$$

if such a derivation ∂ exists.
■ Gurevich, Pyatov, and Saponov defined the quasiderivation of the universal enveloping algebra. ${ }^{2}$

[^1]
Quasiderivation of $U g /(d, \mathbb{C})$

Definition (Gurevich, Pyatov, and Saponov, 2012)
The quasiderivation

$$
U g /(d, \mathbb{C}) \rightarrow M(d, U g /(d, \mathbb{C})), \quad x \mapsto \partial x
$$

is a unique linear mapping satisfying the following.
1 We have $\partial \nu=0$ for any scalar ν.
2 We have $\partial \operatorname{tr}(\xi e)=\xi$ for any numerical matrix ξ.
3 We have the twisted Leibniz rule

$$
\partial(x y)=(\partial x) y+x(\partial y)+(\partial x)(\partial y)
$$

for any elements x and y of the universal enveloping algebra.

Conjecture (Quantum Analogue)

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Conjecture

Suppose that ξ is a numerical matrix and let $\partial_{\xi}=\operatorname{tr}(\xi \partial)$. We have

$$
\left[\partial_{\xi}^{m}(x), \partial_{\xi}^{n}(y)\right]=0
$$

for any m and n and for any central elements x and y of the universal enveloping algebra $U g /(d, \mathbb{C})$.

This conjecture has been recently proved in my joint work with Georgy Sharygin. We are going to put the paper in the arxiv in a short time.

Fundamental Formula and Corollary

Quantum M-F
Construction
Yasushi Ikeda

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We assume the following form

$$
\partial\left(e^{n}\right)_{j}^{i}=\sum_{m=0}^{n-1}\left(g_{m}^{(n-1)}(e)_{j}\left(e^{m}\right)^{i}+h_{m}^{(n-1)}(e)\left(e^{m}\right)_{j}^{i}\right)
$$

where $g_{m}^{(n-1)}$ and $h_{m}^{(n-1)}$ are polynomials.

Fundamental Formula and Corollary

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We have

$$
\begin{aligned}
\partial\left(e^{n+1}\right)_{j}^{i} & =\sum_{k=1}^{d} \partial\left(\left(e^{n}\right)_{k}^{i} e_{j}^{k}\right) \\
& =\sum_{k=1}^{d}\left(\partial\left(e^{n}\right)_{k}^{i} e_{j}^{k}+\left(e^{n}\right)_{k}^{i} \partial e_{j}^{k}+\partial\left(e^{n}\right)_{k}^{i} \partial e_{j}^{k}\right) \\
& =\sum_{k=1}^{d} \partial\left(e^{n}\right)_{k}^{i} e_{j}^{k}+\delta_{j}\left(e^{n}\right)^{i}+\sum_{k=1}^{d} \partial\left(e^{n}\right)_{k}^{i} \delta_{j} \delta^{k}
\end{aligned}
$$

by the twisted Leibniz rule.

Fundamental Formula and Corollary

Quantum M-F
Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We compute the first term. We have

$$
\begin{align*}
& \sum_{k=1}^{d} \sum_{m=0}^{n-1} g_{m}^{(n-1)}(e)_{k}\left(e^{m}\right)^{i} e_{j}^{k}-\sum_{m=0}^{n-1}\left(g_{m}^{(n-1)}(e)_{j}\left(e^{m}\right)^{i}\right. \\
& =\sum_{k=1}^{d} \sum_{m=0}^{n-1} g_{m}^{(n-1)}(e)_{k}\left[\left(e^{m}\right)^{i}, e_{j}^{k}\right] \\
& =\sum_{k=1}^{d} \sum_{m=0}^{n-1} g_{m}^{(n-1)}(e)_{k}\left(\left(e^{m}\right)^{k} \delta_{j}^{i}-\delta^{k}\left(e^{m}\right)_{j}^{i}\right) \\
& =\sum_{m=0}^{n-1}\left(g_{m}^{(n-1)}(e) e^{m} \delta_{j}^{i}-g_{m}^{(n-1)}(e)\left(e^{m}\right)_{j}^{i}\right) \tag{1}
\end{align*}
$$

by the commutation relation.

Fundamental Formula and Corollary

Quantum M-F
Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We have

$$
\sum_{k=1}^{d} \sum_{m=0}^{n-1} h_{m}^{(n-1)}(e)\left(e^{m}\right)_{k}^{i} e_{j}^{k}=\sum_{m=0}^{n-1} h_{m}^{(n-1)}(e)\left(e^{m+1}\right)_{j}^{i}
$$

We compute the third term. We have

$$
\left.\begin{array}{rl}
\sum_{k=1}^{d} \sum_{m=0}^{n-1}\left(g_{m}^{(n-1)}(e)_{k}\left(e^{m}\right)^{i}+h_{m}^{(n-1)}(e)\left(e^{m}\right)_{k}^{i}\right) \delta_{j} \delta^{k} \\
& =\sum_{m=0}^{n-1}\left(g_{m}^{(n-1)}(e)\left(e^{m}\right)_{j}^{i}\right. \tag{2}
\end{array}+h_{m}^{(n-1)}(e)_{j}\left(e^{m}\right)^{i}\right) .
$$

Fundamental Formula and Corollary

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

The second term of the equation (1) and the first term of the equation (2) are cancelled out and we have

$$
\begin{aligned}
\partial\left(e^{n+1}\right)_{j}^{i}= & \sum_{m=0}^{n-1}\left(g_{m}^{(n-1)}(e) e+h_{m}^{(n-1)}(e)\right)_{j}\left(e^{m}\right)^{i}+\delta_{j}\left(e^{n}\right)^{i} \\
& +\sum_{m=0}^{n-1}\left(g_{m}^{(n-1)}(e) e^{m} \delta_{j}^{i}+h_{m}^{(n-1)}(e)\left(e^{m+1}\right)_{j}^{i}\right) \\
= & \sum_{m=0}^{n}\left(g_{m}^{(n)}(e)_{j}\left(e^{m}\right)^{i}+h_{m}^{(n)}(e)\left(e^{m}\right)_{j}^{i}\right)
\end{aligned}
$$

Fundamental Formula and Corollary

Quantum M-F
Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We obtained the recursion formulae

$$
\begin{aligned}
& 1 g_{m}^{(n)}(x)=g_{m}^{(n-1)}(x) x+h_{m}^{(n-1)}(x) \text { for } 0 \leq m<n \\
& 2 g_{n}^{(n)}(x)=1 \text { for } 0 \leq n \\
& 3 h_{0}^{(n)}(x)=\sum_{m=0}^{n-1} g_{m}^{(n-1)}(x) x^{m} \text { for } 0 \leq n \\
& 4 h_{m}^{(n)}(x)=h_{m-1}^{(n-1)}(x) \text { for } 0<m \leq n
\end{aligned}
$$

and the solutions to them are

$$
g_{m}^{(n)}(x)=f_{+}^{(n-m)}(x), \quad h_{m}^{(n)}(x)=f_{-}^{(n-m)}(x)
$$

where we define the polynomials

$$
f_{ \pm}^{(n)}(x)=\frac{(x+1)^{n} \pm(x-1)^{n}}{2}=\sum_{m=0}^{n} \frac{1 \pm(-1)^{n-m}}{2}\binom{n}{m} x^{m}
$$

Fundamental Formula and Corollary

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We obtained a fundamental theorem for quasiderivations of central elements.

Theorem (I, 2022)
We have the formula

$$
\partial\left(e^{n}\right)_{j}^{i}=\sum_{m=0}^{n-1}\left(f_{+}^{(n-m-1)}(e)_{j}\left(e^{m}\right)^{i}+f_{-}^{(n-m-1)}(e)\left(e^{m}\right)_{j}^{i}\right)
$$

for any nonnegative integer n.

Fundamental Formula and Corollary

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

The center of the universal enveloping algebra

$$
\mathcal{Z}(U g /(d, \mathbb{C})) \simeq \mathbb{C}\left[\left(\operatorname{tr} e^{n}\right)_{n=1}^{d}\right]
$$

is a free commutative algebra on the set $\left\{\operatorname{tr} e^{n}\right\}_{n=1}^{d}$.

Corollary

The conjecture holds for $m=n=1$. We have

$$
\left[\partial_{\xi}(x), \partial_{\xi}(y)\right]=0
$$

for any central elements x and y.

Generators of Second-Order Quasiderivations

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

According to the theorem the second quasiderivations

$$
\partial_{\xi}^{2}\left(\operatorname{tr} e^{n}\right), \quad n=0,1, \ldots
$$

are spanned over the center by the elements

$$
\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+m}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+m}\right), \quad m, n=0,1, \ldots
$$

We have the following theorem.

Generators of Second-Order Quasiderivations

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Theorem (I, 2023)

We have

$$
\begin{aligned}
\operatorname{span} & \left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m}\right)\right\}_{m, n=0}^{\infty} \\
& =\operatorname{span}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n}\right)\right\}_{n=0}^{\infty}, \\
\operatorname{span} & \left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m+1}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m+1}\right)\right\}_{m, n=0}^{\infty} \\
& =\operatorname{span}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+1}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+1}\right)\right\}_{n=0}^{\infty}
\end{aligned}
$$

up to the subspace generated by the set $\left\{\operatorname{tr}\left(\xi e^{i}\right) \operatorname{tr}\left(\xi e^{j}\right)\right\}_{i, j=0}^{\infty}$.

Generators of Second-Order Quasiderivations

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Theorem (I, 2023)

We have

$$
\begin{aligned}
\operatorname{span} & \left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m}\right)\right\}_{m, n=0}^{\infty} \\
& =\operatorname{span}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n}\right)\right\}_{n=0}^{\infty}, \\
\operatorname{span} & \left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m+1}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m+1}\right)\right\}_{\infty, n=0}^{\infty} \\
& =\operatorname{span}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+1}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+1}\right)\right\}_{n=0}^{\infty}
\end{aligned}
$$

up to the subspace generated by the set $\left\{\operatorname{tr}\left(\xi e^{i}\right) \operatorname{tr}\left(\xi e^{j}\right)\right\}_{i, j=0}^{\infty}$.

Key Matrix and Symmetry

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Definition

1 We define P_{n} as the n by n submatrix of the following matrix.

$$
\left(\begin{array}{c}
\vdots \\
f_{+}^{(4)}(x) \\
f_{+}^{(3)}(x) \\
f_{+}^{(2)}(x) \\
f_{+}^{(1)}(x) \\
f_{+}^{(0)}(x)
\end{array}\right)=\left(\begin{array}{cccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \\
1 & 0 & 6 & 0 & 1 & \ldots \\
0 & 3 & 0 & 1 & 0 & \ldots \\
1 & 0 & 1 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots
\end{array}\right)\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3} \\
x^{4} \\
\vdots
\end{array}\right)
$$

2 We define $P_{n}^{(m)}$ as the matrix P_{n} shifted to the right by m positions.

Key Matrix and Symmetry

Quantum M-F
Construction
Yasushi Ikeda

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We have

$$
\begin{aligned}
& \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m^{\prime}}\right) e^{n}\right) \\
& \left.\quad=\operatorname{tr}\left(\begin{array}{llll}
\xi & \xi e & \cdots & \left.\xi e^{m+n-1}\right)
\end{array}\right) P_{m}^{(n)}\left(\begin{array}{c}
\xi \\
\xi e \\
\vdots \\
\xi e^{m+n-1}
\end{array}\right)\right) .
\end{aligned}
$$

Key Matrix and Symmetry

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Suppose that A is a numerical square matrix.

Definition

We define

$$
\tau(A)=\left(\begin{array}{cccc}
A_{1}^{1} & A_{2}^{1}+A_{1}^{2} & \cdots & A_{n}^{1}+A_{1}^{n} \\
0 & A_{2}^{2} & \cdots & A_{n}^{2}+A_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{n}^{n}
\end{array}\right)
$$

Key Matrix and Symmetry

Quantum M-F
Construction
Yasushi Ikeda

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We have

$$
\left.\begin{array}{rl}
\operatorname{tr}\left(\begin{array}{llll}
\xi & \xi e & \cdots & \xi e^{n-1}
\end{array}\right) A\left(\begin{array}{c}
\xi \\
\xi e \\
\vdots \\
\xi e^{n-1}
\end{array}\right)
\end{array} \begin{array}{r}
\\
=\operatorname{tr}\left(\begin{array}{llll}
\xi & \xi e & \cdots & \xi e^{n-1}
\end{array}\right) \tau(A)\left(\begin{array}{c}
\xi \\
\xi e \\
\vdots \\
\xi e^{n-1}
\end{array}\right)
\end{array}\right)
$$

since we have $\operatorname{tr}\left(\xi e^{i} \xi e^{j}\right)=\operatorname{tr}\left(\xi e^{j} \xi e^{i}\right)$.

Main Theorem (Matrix Form)

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Theorem (I, 2023)

We have

$$
\tau\left(\begin{array}{cc}
0 & P_{n+2 m} \\
P_{n}^{T} & 0
\end{array}\right)=\sum_{\ell=0}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) P_{n+\ell}^{(n+\ell)}
$$

and

$$
\tau\left(\begin{array}{cc}
0 & P_{n+2 m+1} \\
P_{n}^{T} & 0
\end{array}\right)=\sum_{\ell=0}^{m}\binom{2 m-\ell}{\ell}\left(P_{n+\ell+1}^{(n+\ell)}+P_{n+\ell}^{(n+\ell+1)}\right)
$$

for any nonnegative integers m and n.

Main Theorem (Matrix Form)

Quantum M-F

Construction
Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

We would like to expand $\tau\left(P_{2 m}\right)$ along $(\ell, \ell+1)$ elements.

$$
\begin{aligned}
\tau\left(P_{2 m}\right) & =\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 4 & 0 & 2 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccccc}
0 & 6 & 0 & 11 & 0 & 2 \\
0 & 0 & 9 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \ldots \\
& =\left[2 P_{1}^{(1)}, 4 P_{1}^{(1)}+2 P_{2}^{(2)}, 6 P_{1}^{(1)}+9 P_{2}^{(2)}+2 P_{3}^{(3)}, \ldots\right. \\
& =\sum_{\ell=1}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) P_{\ell}^{(\ell)} .
\end{aligned}
$$

Main Theorem (Matrix Form)

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

Let $(m, n)=(2,1)$. We have

$$
\begin{aligned}
& \left.P_{n+2 m} \begin{array}{c}
0
\end{array}\right)=\tau\left(\begin{array}{cc}
0 & P_{5} \\
P_{1}^{T} & 0
\end{array}\right)=\tau\left(\begin{array}{cccccc}
0 & 1 & 0 & 6 & 0 & 1 \\
0 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
0 & (1) & 0 & 6 & 0 & 2 \\
0 & 0 & 4] & 0 & 2 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=(1)_{1}^{(1)}+4 P_{2}^{(2)}+2 P_{3}^{(3)} \\
&
\end{aligned}
$$

Main Theorem (Matrix Form)

Quantum M-F
Construction
Yasushi Ikeda

Outline

Introduction

Conjecture
Foundamental
Second-Order

Conclusion

We have

$$
\tau\left(\begin{array}{cc}
0 & P_{n+2 m} \\
P_{n}^{T} & 0
\end{array}\right)=\sum_{\ell=0}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) P_{n+\ell}^{(n+\ell)}
$$

Equivalent Condition (Even Case)

Quantum M-F Construction

Yasushi Ikeda

Outline
Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

The first part of the theorem is equivalent to the following.
1 We have

$$
\begin{aligned}
&\binom{2 n_{1}+n_{2}+2 n_{3}+1}{2 n_{3}}+\binom{n_{2}+2 n_{3}}{2 n_{3}} \\
&=\sum_{n_{4}=0}^{n_{3}}\left(\binom{n_{1}+n_{2}+n_{3}+n_{4}+1}{2 n_{4}}+\binom{n_{1}+n_{2}+n_{3}+n_{4}}{2 n_{4}}\right) \\
& \times\binom{ n_{1}+n_{3}-n_{4}}{2\left(n_{3}-n_{4}\right)}
\end{aligned}
$$

for any nonnegative integers $\left(n_{k}\right)_{k=1}^{3}$.

Equivalent Condition (Even Case)

Outline

Introduction
Conjecture
Foundamental
Second-Order
Conclusion
References

2 We have

$$
\begin{aligned}
& f_{+}^{(n+2 m)}(x)+x^{2 m} f_{+}^{(n)}(x) \\
& \quad=\sum_{\ell=0}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) x^{\ell} f_{+}^{(n+\ell)}(x)
\end{aligned}
$$

for any nonnegative integer n.

$$
f_{+}^{(n)}(x)=\frac{(x+1)^{n}+(x-1)^{n}}{2}
$$

These conditions have been verified using Mathematica.

Equivalent Condition (Odd Case)

The second part of the theorem is equivalent to the following.
1 We have

$$
\begin{aligned}
& \binom{2 n_{1}+n_{2}+2 n_{3}+2}{2 n_{3}}+\binom{n_{2}+2 n_{3}}{2 n_{3}} \\
& =\sum_{n_{4}=0}^{n_{3}}\binom{n_{1}+n_{2}+n_{3}+n_{4}+1}{2 n_{4}} \\
& \quad \times\left(\binom{n_{1}+n_{3}-n_{4}+1}{2\left(n_{3}-n_{4}\right)}+\binom{n_{1}+n_{3}-n_{4}}{2\left(n_{3}-n_{4}\right)}\right)
\end{aligned}
$$

for any nonnegative integers $\left(n_{k}\right)_{k=1}^{3}$.

Equivalent Condition (Odd Case)

2 We have

$$
\begin{aligned}
& f_{+}^{(n+2 m+1)}(x)+x^{2 m+1} f_{+}^{(n)}(x) \\
& \quad=\sum_{\ell=0}^{m}\binom{2 m-\ell}{\ell}\left(x^{\ell} f_{+}^{(n+\ell+1)}(x)+x^{\ell+1} f_{+}^{(n+\ell)}(x)\right)
\end{aligned}
$$

for any nonnegative integer n.

$$
f_{+}^{(n)}(x)=\frac{(x+1)^{n}+(x-1)^{n}}{2}
$$

These conditions have been verified using Mathematica.

In[1]:= FullSimplify[Binomial[2n+m+2l+1,2l]
+Binomial[m+2l,2l]-Sum[(Binomial[n+m+l+k+1,2k]
+Binomial[n+m+l+k,2k])Binomial[n+l-k,2(l-k)], $\{k, 0, l\}]$,Element[nlmll,Integers]\&\&n>=0\&\&m>=0\&\&|>=0]

Out[1]= 0
In[2]:= FullSimplify[Binomial[2n+m+21+2,21]
+Binomial[m+2l,2l]-Sum[Binomial[n+m+l+k+1,2k]
(Binomial[n+l-k+1,2(l-k)]+Binomial[n+l-k,2(l-k)]),
$\{k, 0, I\}]$,Element[nlmll,Integers]\&\& $n>=0 \& \& m>=0 \& \& \mid>=0$]
Out[2]= 0
$\operatorname{In}[3]:=$ Fplus[n_][x_]:=((x+1)$\left.)^{\wedge} n+(x-1)^{\wedge} n\right) / 2$
$\operatorname{In}[4]:=$ Simplify[Fplus $[n+2 m][x]+x^{\wedge}(2 m)^{*}$ Fplus $[n][x]-$
Sum[(Binomial[2m-k,k]+Binomial[2m-
$\mathrm{k}-1, \mathrm{k}-1]) \mathrm{x}^{\wedge} \mathrm{k}^{\star}$ Fplus $\left.[\mathrm{n}+\mathrm{k}][\mathrm{x}],\{\mathrm{k}, 0, \mathrm{~m}\}\right]$,Element[nl m,Integers]\&\& $\gg=0 \& \& m>=0$]

Out[4]= 0
$\operatorname{In}[5]:=$ Simplify $\left[F p l u s[n+2 m+1][x]+x^{\wedge}(2 m+1)^{*}\right.$ Fplus $[n][x]-$ Sum[Binomial[2m-k,k] $\left(x^{\wedge} k^{\star}\right.$ Fplus[n+k+1][x] $+\mathrm{x}^{\wedge}(\mathrm{k}+1)^{*}$ Fplus[n+k][x],\{k,0,m\}],Element[nl m, Integers]\&\& $>=0 \& \& m>=0$]

Out[5]= 0

Conclusion

- In a quantum analogue of the theorem of A. Mishchenko and A . Fomenko, the derivation of the symmetric algebra $S g l(d, \mathbb{C})$ is replaced by the quasiderivation of the universal enveloping algebra $U g l(d, \mathbb{C})$.
- I derived a concrete formula and proved the quantum analogue for order 1. Higher quasiderivations can be computed using this formula as well.
- The general case of the quantum analogue has been recently proved in my joint work with Georgy Sharygin. We are going to put the paper in the arxiv in a short time.
- I successfully reduced the number of generators with regard to the second quasiderivations. I suppose that higher quasiderivations are also generated by reduced number of generators.

References

E Gurevich，Dimitri，Pavel Pyatov，and Pavel Saponov． ＂Braided Weyl algebras and differential calculus on $U(u(2)) "$ ．In：Journal of Geometry and Physics 62.5 （2012）， pp．1175－1188．
Ikeda，Yasushi．＂Quasidifferential operator and quantum argument shift method＂．In：Theoretical and Mathematical Physics 212.1 （2022），pp．918－924．
居 Ikeda，Yasushi and Georgiy Sharygin．＂The argument shift method in universal enveloping algebra $U \mathfrak{g l}{ }_{d}$（in preparation）＂．In：（）．
冨 Mishchenko，AS and AT Fomenko．＂Euler equations on finite－dimensional Lie groups＂．In：Mathematics of the USSR－Izvestiya 12.2 （1978），pp．371－389．
囯 Sharygin，Georgiy．＂Quasi－derivations on $U \mathfrak{g l}_{n}$ and the argument shift method＂．In：Contemporary Mathematics 789 （2023）．

[^0]: ${ }^{1}$ Mishchenko and Fomenko, "Euler equations on finite-dimensional Lie groups".

[^1]: ${ }^{2}$ Gurevich, Pyatov, and Saponov, "Braided Weyl algebras and differential calculus on $U(u(2))$ ".

