Quantum shift

Yasushi Ikeda

Lie algebra

- .

Formula

Deformatio

References

Quantum partial derivatives and argument shift method

Yasushi Ikeda

Moscow State University

November 10, 2024

Outline

Quantum shift

Yasushi Ikeda

Lie algebra Argument Formula

D.C.

Deformatio

- 1 Lie algebra and quantization
- 2 Argument shift method (classical and quantum)
- 3 Formula for quantum partial derivatives
- 4 Generators of quantum argument shift algebra
- 5 Appendix: Deformation quantization of Poisson manifold

Algebra

Quantum shift

Yasushi Ikeda

Lie algebra

Formula Generators

Generators

Reference

Definition (Algebra)

An algebra is a vector space A with an associative bilinear mapping

$$A^2 \to A,$$
 $(x,y) \mapsto xy.$

- The set $M(d,\mathbb{C})$ of d by d complex matrices is an complex algebra.
- Suppose that H is a Hilbert space. The set B(H) of bounded linear operators on the Hilbert space H is a complex algebra.

Commutator and Lie algebra

Quantum shift

Yasushi Ikeda

Lie algebra

Argument

Communication

Generators

References

Remark (Commutator)

The alternating mapping

$$A^2 \to A,$$
 $(x, y) \mapsto [x, y] = xy - yx$

satisfies the Jacobi identity.

Definition (Lie algebra)

A $Lie\ algebra$ is a vector space g with an alternating mapping

$$g^2 \to g,$$
 $(x,y) \mapsto [x,y]$

satisfying the Jacobi identity.

General linear Lie algebra

Quantum shift

Yasushi Ikeda

Lie algebra

Argument Formula Generators

Deformation

- 1 Any algebra is a Lie algebra.
- 2 Any Lie algebra is isomorphic to a Lie subalgebra of some algebra by the Poincaré–Birkhoff–Witt theorem.

Remark

The notion of Lie algebras is an abstraction of commutators.

Definition (General linear Lie algebra)

The general linear Lie algebra $gl(d,\mathbb{C})=M(d,\mathbb{C})$.

Ado's theorem

Quantum shift

Yasushi Ikeda

Lie algebra

Formula

Generators

Delomatic

Theorem (Ado)

Any finite dimensional complex Lie algebra g is isomorphic to a Lie subalgebra of the general linear Lie algebra $gl(d,\mathbb{C})$ for some d.

Suppose that (e_1, \ldots, e_d) is a basis of a finite dimensional complex Lie algebra g.

Symmetric algebra

Quantum shift

Yasushi Ikeda

Lie algebra

Argument Formula

Deformatio

Delomati

Definition (Symmetric algebra)

The symmetric algebra Sg is an algebra generated by the elements (e_1, \ldots, e_d) subject to the defining relations

$$e_m e_n = e_n e_m,$$

$$m, n = 1, \ldots, d$$
.

Remark

The symmetric algebra Sg is nothing but the polynomial algebra $\mathbb{C}[e_1, \ldots, e_d]$.

Universal enveloping algebra

Quantum shift

Yasushi Ikeda

Lie algebra

Argument Formula Generators

Deformation

Delomatic

Definition (Universal enveloping algebra)

The universal enveloping algebra Ug is an algebra generated by the elements (e_1, \ldots, e_d) subject to the defining relations

$$e_m e_n = e_n e_m + [e_m, e_n],$$
 $m, n = 1, ..., d.$

Remark

The universal enveloping algebra Ug is a quantization of the symmetric algebra Sg.

Lie-Poisson bracket

Quantum shift

Yasushi Ikeda

Lie algebra

J

Formula

Generators

D . C

References

Theorem (Lie-Poisson bracket)

There exists a unique Poisson bracket on the symmetric algebra Sg extending the Lie bracket on the Lie algebra g.

$$\begin{array}{ccc} \textit{Sg} \times \textit{Sg} & \xrightarrow{\textit{Poisson bracket}} & \textit{Sg} \\ & \uparrow & & \uparrow \\ & \textit{g} \times \textit{g} & \xrightarrow{\textit{Lie bracket}} & \textit{g} \end{array}$$

Remark

We have gr Ug = Sg.

Classical argument shift method

Quantum shift

Yasushi Ikeda

Lie algebra

Argument

Formula

.

. .

References

Suppose that ξ is an element of the dual space g^* and let

$$\overline{\partial}_{\xi} = \xi(e_1) \frac{\partial}{\partial e_1} + \dots + \xi(e_d) \frac{\partial}{\partial e_d}$$

be a derivation on the symmetric algebra Sg.

Theorem (Mishchenko and Fomenko, 1978)

The family

$$\bigcup_{n=0}^{\infty} \left\{ \overline{\partial}_{\xi}^{n} x : x \text{ is Poisson central} \right\}$$
 (1)

is Poisson commutative.

Argument shift algebra (classical and quantum)

Quantum shift

Yasushi Ikeda

Lie algebra

Formula Generators

Deformation

Reference

Definition (Argument shift algebra)

The Poisson commutative subalgebra \overline{C}_{ξ} generated by the Poisson commutative family (1) is called the argument shift algebra in the direction ξ .

Definition (Quantum argument shift algebra)

A commutative subalgebra C_{ξ} of the universal enveloping algebra Ug satisfying gr $C_{\xi}=\overline{C}_{\xi}$ is called a quantum argument shift algebra in the direction ξ .

The motivation for my talk is to quantize not only the algebra \overline{C}_{ξ} but also the derivation $\overline{\partial}_{\xi}$.

Generating matrix of general linear Lie algebra

Quantum shift

Yasushi Ikeda

.

Argument

Formula

Generators

Deformation

References

Let
$$e = \begin{pmatrix} e_1^1 & \dots & e_d^1 \\ \dots & \dots & \vdots \\ e_1^d & \dots & e_d^d \end{pmatrix}$$
 be a matrix satisfying the following.

■ The set

$$\left\{ e_{j}^{i}:i,j=1,\ldots,d\right\}$$

is a basis of the general linear Lie algebra $gl(d, \mathbb{C})$.

We have the commutation relations

$$\left[e_{j_1}^{i_1},e_{j_2}^{i_2}\right] = \delta_{j_2}^{i_1}e_{j_1}^{i_2} - \delta_{j_1}^{i_2}e_{j_2}^{i_1}.$$

Partial derivatives

Quantum shift

Yasushi Ikeda

. .

Argument

Formula

Generators

Deformation

References

We define

$$\overline{\partial} x = \begin{pmatrix} \overline{\partial}_{1}^{1} x & \dots & \overline{\partial}_{d}^{1} x \\ \dots & \dots & \dots \\ \overline{\partial}_{1}^{d} x & \dots & \overline{\partial}_{d}^{d} x \end{pmatrix}, \qquad \overline{\partial}_{j}^{i} = \frac{\partial}{\partial e_{j}^{i}}$$

for any element x of the symmetric algebra $Sgl(d,\mathbb{C})$.

Differential operator

Quantum shift

Yasushi Ikeda

Lie algebr

Argument

Formula

Generator

Deformation

Reference

Remark

The differential operator

$$Sgl(d,\mathbb{C}) \to M(d,Sgl(d,\mathbb{C})), \qquad x \mapsto \overline{\partial}x$$

is a unique linear operator satisfying the following.

- $\overline{\partial} \operatorname{tr}(\xi e) = \xi$ for any numerical matrix ξ .
- 3 (Leibniz rule)

$$\overline{\partial}(xy) = (\overline{\partial}x)y + x(\overline{\partial}y)$$

for any elements x and y of the symmetric algebra $Sgl(d,\mathbb{C})$.

Quantum differential operator

Quantum shift

Yasushi Ikeda

Lie algeb

Argument

Formula

Generators

Deformation

Reference

Definition (Gurevich, Pyatov, and Saponov, 2012)

The quantum differential operator

$$Ugl(d,\mathbb{C}) \to M(d,Ugl(d,\mathbb{C})), \qquad x \mapsto \partial x$$

is a unique linear operator satisfying the following.

- $\mathbf{1} \ \partial \nu = \mathbf{0}$ for any scalar ν .
- $\partial \operatorname{tr}(\xi e) = \xi$ for any numerical matrix ξ .
- **3** (quantum Leibniz rule)

$$\partial(xy) = (\partial x)y + x(\partial y) + (\partial x)(\partial y)$$

for any elements x and y of the universal enveloping algebra $Ugl(d, \mathbb{C})$.

Quantum argument shift method

Quantum shift

Yasushi Ikeda

Lie algeb

Argument

Generators

Deformatio

References

Suppose that ξ is a numerical matrix and let $\partial_{\xi} = \operatorname{tr}(\xi \partial)$.

Theorem (I. and Sharygin, 2023)

The family

$$\bigcup_{n=0}^{\infty} \left\{ \partial_{\xi}^{n} x : x \text{ is central } \right\}$$
 (2)

is commutative.

Corollary

The subalgebra C_{ξ} generated by the family (2) is a quantum argument shift algebra in the direction ξ .

Gelfand invariants

Quantum shift

Yasushi Ikeda

Lie algebra

Argument

Formula

Deformation

Reference

Remark (Gelfand invariants)

The center C of the universal enveloping algebra $Ugl(d,\mathbb{C})$ is generated by the elements $\Big\{\mathrm{tr}\,e,\ldots,\mathrm{tr}\,e^d\Big\}$.

Quantum differential operator (modified)

Quantum shift

Yasushi Ikeda

Lie algebra Argument

Formula

Generators

Deferen

Remark

The linear operator

$$Ugl(d,\mathbb{C}) \to M(d,Ugl(d,\mathbb{C})), \quad x \mapsto diag(x,\ldots,x) + \partial x$$

is an algebraic homomorphism and will be denoted by ∂ from now on. We have the *quantum Leibniz rule*

$$\partial(xy)=(\partial x)(\partial y)$$

for any elements x and y of the universal enveloping algebra $Ugl(d, \mathbb{C})$.

Quantum shift

Yasushi Ikeda

A -----

Formula

Deformatio

Reference

We define

$$f_{\pm}^{(n)}(x) = \sum_{m=0}^{n} \frac{1 \pm (-1)^{n-m}}{2} {n-1 \choose m} x^{m}.$$

Theorem (I, 2022)

We have

$$\partial(e^{n})_{j}^{i} = \sum_{m=0}^{n} \left(f_{+}^{(n-m)}(e)(e^{m})_{j}^{i} + f_{-}^{(n-m)}(e)_{j}(e^{m})^{i} \right)$$
$$= \sum_{m=0}^{n} \left((e^{m})_{j}^{i} f_{+}^{(n-m)}(e) + (e^{m})_{j} f_{-}^{(n-m)}(e)^{i} \right).$$

Quantum shift

Yasushi Ikeda

Argument

Formula

Generators

_ .

References

We assume the following form

$$\partial(e^n)^i_j = \sum_{m=0}^n (g_m^{(n)}(e)(e^m)^i_j + h_m^{(n)}(e)_j(e^m)^i),$$

where $g_m^{(n)}$ and $h_m^{(n)}$ are polynomials.

Quantum shift

Yasushi Ikeda

Lie algebra Argument

Formula

Generators

Deformation

References

We have

$$\partial(e^{n+1})_{j}^{i} = \sum_{k=1}^{d} \partial((e^{n})_{k}^{i} e_{j}^{k}) = \sum_{k=1}^{d} (\partial(e^{n})_{k}^{i}) (\partial e_{j}^{k})$$
$$= \sum_{m=0}^{n} \sum_{k=1}^{d} (g_{m}^{(n)}(e)(e^{m})_{k}^{i} + h_{m}^{(n)}(e)_{k}(e^{m})^{i}) (e_{j}^{k} + E_{j}^{k})$$

by the quantum Leibniz rule and the induction hypothesis.

Quantum shift

Yasushi Ikeda

Lie algebr

Formula

C

00.10.000

We have

$$\partial(e^{n+1})_{j}^{i} = \sum_{m=0}^{n} h_{m}^{(n)}(e)e^{m}\delta_{j}^{i} + \sum_{m=1}^{n+1} g_{m-1}^{(n)}(e)(e^{m})_{j}^{i}$$

$$+ \sum_{m=0}^{n} (g_{m}^{(n)}(e) + h_{m}^{(n)}(e)e)_{j}(e^{m})^{i}$$

$$= \sum_{m=0}^{n+1} (g_{m}^{(n+1)}(e)(e^{m})_{j}^{i} + h_{m}^{(n+1)}(e)_{j}(e^{m})^{i})$$

by the commutation relations

$$[(e^m)^i, e_i^k] = (e^m)^k \delta_i^i - \delta^k (e^m)_i^i.$$

Quantum shift

Yasushi Ikeda

Lie algebra

Argument

Formula

Generators

Deformatio

References

We obtained the initial condition

$$g_0^{(0)}(x) = 1,$$
 $h_0^{(0)}(x) = 0$

and the recursive relation

$$g_0^{(n+1)}(x) = \sum_{m=0}^n h_m^{(n)}(x) x^m,$$

$$g_m^{(n+1)}(x) = g_{m-1}^{(n)}(x), \qquad 0 < m \le n+1,$$

$$h_m^{(n+1)}(x) = g_m^{(n)}(x) + h_m^{(n)}(x) x, \qquad 0 \le m < n+1,$$

$$h_{n+1}^{(n+1)}(x) = 0.$$

Quantum shift

Yasushi Ikeda

Argument

Formula

Generators

Deformatio

References

Its solution is

$$g_m^{(n)}(x) = f_+^{(n-m)}(x), \qquad h_m^{(n)}(x) = f_-^{(n-m)}(x).$$

Quantum directional derivative

Quantum shift

Yasushi Ikeda

Lie algebra

Argument

Formula

Generators

Deformatio

Reference

We adhere to the convention that tr $e^{-1} = 1$. We have

$$\begin{split} \partial_{\xi} \prod_{m} \operatorname{tr} e^{n_{m}} &= \sum_{m_{1}=-1}^{n_{1}} \operatorname{tr} e^{m_{1}} \sum_{m_{2}=-1}^{n_{2}} \operatorname{tr} e^{m_{2}} \cdots \operatorname{tr} \big(\xi \prod_{k} f_{+}^{(n_{k}-m_{k})}(e) \big), \\ \partial_{\xi}^{2} \prod_{m} \operatorname{tr} e^{n_{m}} &= \sum_{m_{1}=-1}^{n_{1}} \operatorname{tr} e^{m_{1}} \sum_{m_{2}=-1}^{n_{2}} \operatorname{tr} e^{m_{2}} \cdots \sum_{k_{1}=0}^{n_{1}-m_{1}} \sum_{k_{2}=0}^{n_{2}-m_{2}} \cdots \\ & \operatorname{tr} \Big(\xi \prod_{\ell} f_{+}^{(k_{\ell})}(e) \partial \operatorname{tr} \big(\xi \prod_{\ell} f_{+}^{(n_{\ell}-m_{\ell}-k_{\ell})}(e) \big) \Big). \end{split}$$

Generators

Quantum shift

Yasushi Ikeda

Lie algebra

Formula

Generators

Deformatio

We define

$$C_{\xi}^{(0)} = C,$$
 $C_{\xi}^{(n)} = C_{\xi}^{(n-1)} [\partial_{\xi}^{n} C].$

We have

$$\begin{split} C_{\xi}^{(1)} &= C_{\xi}^{(0)} \Big[\operatorname{tr} \big(\xi e^{n} \big) : n = 1, 2, \dots \Big], \\ C_{\xi}^{(2)} &= C_{\xi}^{(1)} \Bigg[\big(\tau_{\xi} \circ \sigma \big) \begin{pmatrix} 0 & P_{n}^{T} \\ P_{m} & 0 \end{pmatrix} : m, n = 0, 1, 2, \dots \Big] \\ &= C_{\xi}^{(1)} \Bigg[\big(\tau_{\xi} \circ \sigma \big) \begin{pmatrix} 0 & P_{n}^{T} \\ P_{m} & 0 \end{pmatrix} : |m - n| \le 1 \Bigg]. \end{split}$$

Generators

Quantum shift

Yasushi Ikeda

Argument

Formula

Generators

D 6 ...

Delomation

We have

$$\frac{1}{2}(\tau_{\xi} \circ \sigma) \begin{pmatrix} 0 & P_n^T \\ P_n & 0 \end{pmatrix} = \sum_{m=0}^n \operatorname{tr}(\xi e^m \xi e^n f_-^{(n-m)}(e)),$$

$$(\tau_{\xi} \circ \sigma) \begin{pmatrix} 0 & P_n^T \\ P_{n+1} & 0 \end{pmatrix} = \sum_{m=0}^n \operatorname{tr}(\xi e^m \xi (e^{n+1} f_-^{(n-m)}(e)) + e^n f_-^{(n-m+1)}(e))).$$

Generators

Quantum shift

Yasushi Ikeda

Lie algebra Argument

Formula

Generators

Deformation

Delomation

The generators are $\operatorname{tr}(\xi e)$, $\operatorname{tr}(\xi e^2)$, ... and

$$\begin{split} & \text{tr}(\xi^2 e), \\ & \text{tr}(2\xi^2 e^2 + \xi e \xi e), \\ & \text{tr}(\xi^2 e^3 + \xi e \xi e^2), \\ & \text{tr}(2\xi^2 e^4 + 2\xi e \xi e^3 + \xi e^2 \xi e^2 + \xi^2 e^2), \\ & \text{tr}(\xi^2 e^5 + \xi e \xi e^4 + \xi e^2 \xi e^3 + \xi^2 e^3), \\ & \text{tr}(2\xi^2 e^6 + 2\xi e \xi e^5 + 2\xi e^2 \xi e^4 + \xi e^3 \xi e^3 + 4\xi^2 e^4 + \xi e \xi e^3), \\ & \text{tr}(\xi^2 e^7 + \xi e \xi e^6 + \xi e^2 \xi e^5 + \xi e^3 \xi e^4 + 3\xi^2 e^5 + \xi e \xi e^4), \dots. \end{split}$$

They are mutually commutative.

Deformation quantization

Quantum shift

Yasushi Ikeda

Argument

Formula Generators

Deformation

Reference

Suppose that M is a smooth manifold and let

$$C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M), \qquad (x,y) \mapsto \{x,y\}$$

be a Poisson bracket. A star product

$$C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)[[\nu]],$$

$$(x,y) \mapsto x \star y = xy + \sum_{n=1}^{\infty} B_n(x,y)\nu^n$$

is called a deformation quantization if it satisfies the following.

Deformation quantization

Quantum shift

Yasushi Ikeda

Lie algeb

Argumen⁻

Formula

Generator

Deformation

References

- **1** B_1 , B_2 , ... are bidifferential operators.
- 2 Associativity.
- We have

$$B_1(x,y) - B_1(y,x) = \left[\frac{x \star y - y \star x}{\nu}\right]_{\nu=0} = \{x,y\}$$

for any smooth functions x and y.

Theorem (Kontsevich, 2003)

Any Poisson manifold has a deformation quantization.

Deformation quantization

Quantum shift

Yasushi Ikeda

Lie algebra Argument Formula Generators

Deformation

The dual space g^* of a Lie algebra g is a Poisson manifold.

Remark

The image of the restriction of the star product on the product $Sg \times Sg$ is contained in the polynomial algebra $(Sg)[\nu]$.

It makes sense to put $\nu=1$ and obtain the star product on the symmetric algebra Sg.

Theorem

The universal enveloping algebra Ug is isomorphic to the symmetric algebra Sg with the star product.

References

Quantum shift

Yasushi Ikeda

Lie algebra Argument Formula

Generators Deformation

References

- [1] Yasushi Ikeda. "Quasidifferential operator and quantum argument shift method". In: *Theoretical and Mathematical Physics* 212.1 (2022), pp. 918–924.
- [2] Yasushi Ikeda. "Second-order quantum argument shifts in Ugl_d". In: Theoretical and Mathematical Physics 220.2 (2024), pp. 1294–1303.
- [3] Yasushi Ikeda and Georgy Sharygin. "The argument shift method in universal enveloping algebra $U\mathfrak{gl}_d$ ". In: Journal of Geometry and Physics 195 (2024), p. 105030.
- [4] Yasushi Ikeda, Alexander Molev, and Georgy Sharygin. "On the quantum argument shift method". In: arXiv preprint arXiv:2309.15684 (2023).