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Statement

@shifts Suppose that £ is a d X d complex matrix and let

d .

0 =tr(£0) = > €lo,

ij=1

Statement

where 8} € hom Ugl, are the quantum derivations introduced
by Gurevich, Pyatov, and Saponov. The main theorem is the
following:

Theorem (I. and Sharygin, 2024)

Suppose that x and y are central elements of Ugl,. Then
[8g’x, Ggy] =0

for any nonnegative integers m and n.
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Suppose that g is a Lie algebra.

Algebras m Both the symmetric algebra Sg and the universal
enveloping algebra Ug are associative algebras.

m The symmetric algebra Sg (commutative) gives classical
descriptions and the universal enveloping algebra Ug
(non-commutative) gives quantum descriptions of the Lie
algebra g.

m The symmetric algebra Sg = gr Ug is the associated
graded Poisson algebra of the universal enveloping algebra
Ug.
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m The symmetric algebra Sg is a subalgebra of the smooth

functions algebra C*°g*.

Algebi . . . . .
= m There exists a unique Poisson bracket (Lie—Poisson

bracket) on the smooth functions algebra C*°g* extending
the Lie bracket.

Lie—Poi bracket
Coog* % Coog* ie—Poisson bracke Coog*
Lie bracket
g§X8g - g

m The dual space g* of the Lie algebra g is a Poisson
manifold.
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Consider a deformation quantization of C>g*.

C®g* x C®g* —— (Cg*)[[V]]

I I

SgxSg —— (So)lV]

Algebras

m It makes sense to put ¥ = 1 and obtain the star product
on the symmetric algebra Sg.

m The universal enveloping algebra Ug is isomorphic to the
symmetric algebra Sg with the star product at v = 1.
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Take a basis (e,)9_; of g and let

d
Motivation 56 = Z:é-(en)i € der Sg

Oe
n=1 n

be the directional derivative along V¢ € g*. Let C be the
Poisson center of Sg. The following theorem is referred to as
the argument shift method.

Theorem (A. Mishchenko and A. Fomenko, 1978)

The subset {52x : (n,x) € N x f} is Poisson commutative.
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m We obtaine a ‘ Poisson commutative ‘ subalgebra C¢
generated by these elements ng.

m Recall .

m Vinberg asked if the argument shift algebra C¢ can be

quantised to a subalgebra C¢ of the

universal enveloping algebra Ug in a way that

Motivation

gI’C£:?£.

m Such C is called a quantum argument shift algebra.
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m Vinberg's problem has been resolved in two ways:

m Twisted Yangians: Nazarov—Olshanski.
Motivation m Symmetrisation mapping: Tarasov.

m Also resolved using the Feigin—Frenkel center:

m for regular elements &: Feigin et al. and Rybnikov.
m for simple Lie algebras of types A and C: Futorny—Molev
and Molev—Yakimova.

The purpose of my talk is to quantize not only the algebra ?g
but also the operator 0.
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........... be a matrix satisfying the following.

{ej:i,jzl,...,d}

is a basis of the general linear Lie algebra gl(d, C).

Derivation m The set

m We have the commutation relations

i k] _ gii i s 0
[ejl ’ ejz] - 5]2 i 61'1 €
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We define

Derivation =1 =1

B 81X 8dx . P
Ox= | ..., , 81'- = o
99 x d9x Oe;

for any element x of the symmetric algebra Sgl(d, C).
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The derivation

Sg[d — M(d, Sg[d)7 X > EX

Derivation

is a unique linear mapping satisfying the following.
v = 0 for any scalar v.
Otr(&e) = ¢ for any numerical matrix .
(Leibniz rule)

A(xy) = (dx)y + x(dy)

for any elements x and y of the symmetric algebra Sgl,.
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Derivation

There is no such mapping on Ugl, because it is
non-commutative.
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The quantum derivation

— M(d, Ugly), X — Ox

is a unique linear mapping satisfying the following.

Derivation

dv = 0 for any scalar v.
dtr(£e) = & for any numerical matrix &.
(quantum Leibniz rule)

A(xy) = (Ox)y + x(9y) +| (9x)(dy)

for any elements x and y of the universal enveloping
algebra Ugl,.
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Let C be the center of the algebra Ugl,. Suppose that £ is a
numerical matrix and let ¢ = tr(£0). The main theorem is the
following:

Theorem (I. and Sharygin, 2024)

Derivation
The subset
{3gx:(n,x)€N><C} (1)

is commutative.

Corollary

The subalgebra C¢ generated by the subset (1) is the quantum
argument shift algebra in the direction &.
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Vesustn (b m We may assume that £ = diag(zi, ..., zy4) is diagonal and
(z1,...,24) is distinct considering the adjoint action of the
general linear Lie group GLg.

m Vinberg and Rybnikov showed that the quantum argument
shift algebra in the direction £ is the centralizer of the set

(a2} g

j#i ! i=1

Derivation

m Since, by definition, the quantum argument shift algebra is
commutative, the proof is carried out by showing that the
quantum argument shift 8gx commutes with the elements
(2) by induction on the natural number n.
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The center C of the algebra Ugl, is the free commutative
algebra on the elements

tre, s tred.

Formula

They are called the Gelfand invariants. We would like to
calculate the quantum argument shift 8£x for a central element
x. It is necessary and even sufficient to calculate the quantum

derivation 8(e”)J"-.
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The linear operator

Ugly — M(d, Ugly), x > diag(x, ..., x) + Ox

Formula

is an algebraic homomorphism and will be denoted by O from
now on. We have the quantum Leibniz rule

d(xy) = (9x)(9y)

for any elements x and y of the universal enveloping algebra
Ug[d
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n

We define fj(cn)(x) = Z L G (n - 1)x’”.
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= 2 m

Theorem (I, 2022)

Formula We have
a(emi = 3" (F(e) ™) + £ (e)s(e™))

T () + (e ).

|
—
—

D
3
~

The formula is used for the base case.
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CCEEEN  \\e assume the following form

n

a(e™i =" (g (e)(e™)i + hi(e);(e™)),

m=0

(n)

Formula where g,(n") and hy,’ are polynomials. By the quantum Leibniz
rule and the commutation relations

(™), ef] = (s — 35 (e™]
We obtained the initial condition

g0 =1, Y (x) = 0
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and the recursive relation

&4V (x Z hD (x

Formula g’(’7n+1)(x) grgnn)l( ) 0<m S n+ 1,
(nﬂ)(X): m)(X)+h$ﬁ)(X)x, 0<m<n+1,
(n+1)( )
n—|—1

Its solution is

g (x) = FM(x), W (x) = £ (x).
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The inductive step reduces to proving

Formula [ad e;,ag] = Had z

J#i

e{ef;j,ag},ag] _o.

zi —

It can be done by computation.
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Our theorem causes a filtration

Cg(O) — C, C(”) C(" 1) [a ]

of the quantum argument shift algebra C;. Using the formula
we obtain

Generators

Cé(l) = Cg(o)[tr(ge”) ‘n= 1,2,...},

-
C£(2):C§(1)[T§ (F?m Fg’) :m,n:0,1,2,...].

Pp: some matrix composed of binomial coefficients.
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-liffis But as for the second line these generators are redundant:
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-
G =C [T&(Pm O>' Im—n| <1||.

Lemma (I, 2025)

Generators We have

0 PI\ _ ~~((2n—k 2n—k—1 (m-K)
(omar ) =2 () = (7))

0 Pr) _ g~ (20 =k (m+k) (m+k+1)
o (Pm+2n+1 0 > o kZ:o ( k (Pm+k+1 e Pm+k )

for any nonnegative integers m and n.
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PEAR B GRALES ST CA
(Con o)+ 0 i)
() [V B oY (b Ay [

()= ()0)
ST )

Generators
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The generators are tr(fe), tr(§e2), ...and

tr(g2 )
tr(2¢%e? +§e§e)
Generators (
(2{264 +26ele® + (e + £26?),
(§ + Cete* + ge?ted + 2 3)
tr(262e® + 2¢ete® + 2¢e%¢e? + Ee3¢e’ + 4¢%e + Cete )
tr(%e” + Eefe® + £e?e® + Ce¢e” +3¢%e + Lete?), ..

They are mutually commutative.
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m We consider a representation of another Lie algebra and
obtain a quantum derivation/quantum argument shift
operator. However, this naive operator does not satisfy the
quantized argument shift method. This means that | still
do not know the appropriate definition of the quantum
derivation/quantum argument shift operator in the general
case.

Conclusions

m It may be more promising to generalize this result to the
general linear Lie superalgebra gl ,. | am currently
working on this.
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