Commutativity of Second-Order
Conjecture
First-Order
Second-Order
Conclusion
Yasushi Ikeda
Moscow State University
April 19
Lomonosov 2023

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

1 Introduction

2 Quasiderivation and Conjecture

3 Commutativity of First-Order Quasiderivations

4 Commutativity of Second-Order Quasiderivations

5 Conclusion

Idea
g: Lie alg

∂s
constant
vector field
symmetric alg of $g \Rightarrow$ Poisson alg.
M-F theorem

$$
\begin{aligned}
& \left.\left\{\partial_{\xi}^{n}(f)_{1}\right)_{\xi}^{n}(g)\right\}=0 \\
& v f, \forall g \in Z_{\pi}(S(g))
\end{aligned}
$$

$$
g=g_{l}(d, \mathbb{C})
$$

Conjecture

$$
\begin{array}{r}
{\left[\partial_{\xi}^{m}(f), \partial_{\xi}^{n}(g)\right]=0} \\
\forall f, \forall g \in Z(u(g))
\end{array}
$$

Poisson Bracket on the Dual Space of a Lie Algebra

Commutativity

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

■ We are going to investigate a quantum analogue of the theorem of A. Mishchenko and A. Fomenko.

- The dual space g^{*} of a finite dimensional real Lie algebra g is a Poisson manifold and the following diagram commutes.

Classical Theorem of A. Mishchenko and A. Fomenko

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

The classical theorem of A. Mishchenko and A. Fomenko is the following. ${ }^{1}$

Theorem (A. Mishchenko and A. Fomenko, 1978)

Suppose that ∂_{ξ} is a constant vector field on the dual space g^{*}. We have

$$
\left\{\partial_{\xi}^{m}(x), \partial_{\xi}^{n}(y)\right\}=0
$$

for any m and n and for any Poisson central elements x and y of the symmetric algebra $S(g)$.

[^0]
Quantum Analogue of A. Mishchenko and A. Fomenko

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

We are going to investigate a quantum analogue of this theorem.

■ We consider $g=g l(d, \mathbb{C})$.
■ The symmetric algebra $S(g)$ should be replaced by the universal enveloping algebra $U(g)$.
■ There is a candidate for a "derivation" of the universal enveloping algebra $U(g)$.

Quasiderivation of $U g /(d, \mathbb{C})$

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

■ Gurevich, Pyatov, and Saponov defined the quasiderivation of the universal enveloping algebra. ${ }^{2}$
■ Let

$$
e=\left(\begin{array}{ccc}
e_{1}^{1} & \ldots & e_{d}^{1} \\
\vdots & \ddots & \vdots \\
e_{1}^{d} & \ldots & e_{d}^{d}
\end{array}\right) \in M(d, \cup g /(d, \mathbb{C}))
$$

where e_{j}^{i} form a linear basis of $g l(d, \mathbb{C})$ and satisfy the commutation relations $\left[e_{j}^{i}, e_{l}^{k}\right]=\delta_{l}^{i} e_{j}^{k}-\delta_{j}^{k} e_{l}^{i}$.
${ }^{2}$ Gurevich, Pyatov, and Saponov, "Braided Weyl algebras and differential calculus on $U(u(2))$ ".

Quasiderivation of $U g /(d, \mathbb{C})$

Commutativity

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Definition (Gurevich, Pyatov, and Saponov, 2012)

The quasiderivation

$$
U g I(d, \mathbb{C}) \rightarrow M(d, U g I(d, \mathbb{C})), \quad x \mapsto \partial x
$$

is a unique linear mapping satisfying the following.
1 We have $\partial \nu=0$ for any scalar ν.
2 We have $\partial \operatorname{tr}(\xi e)=\xi$ for any numerical matrix ξ.
3 We have the twisted Leibniz rule

$$
\partial(x y)=(\partial x) y+x(\partial y)+(\partial x)(\partial y)
$$

for any elements x and y of the universal enveloping algebra.

Conjecture (Quantum Analogue)

Commutativity

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Conjecture

Suppose that ξ is a numerical matrix and let $\partial_{\xi}=\operatorname{tr}(\xi \partial)$. We have

$$
\left[\partial_{\xi}^{m}(x), \partial_{\xi}^{n}(y)\right]=0
$$

for any m and n and for any central elements x and y of the universal enveloping algebra $\operatorname{Ugl}(d, \mathbb{C})$.

Poisson bracket on $S(g) \rightsquigarrow$ commutator on $U(g)$

Fundamental Formula and Corollary

Commutativity
Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

We obtained a fundamental theorem for quasiderivations of central elements. ${ }^{3}$

Theorem (I, 2022)

We have the formula

$$
\partial\left(e^{n}\right)_{j}^{i}=\sum_{m=0}^{n-1}\left(\left(e^{m}\right)_{j} f_{+}^{(n-m-1)}(e)^{i}+\left(e^{m}\right)_{j}^{i} f_{-}^{(n-m-1)}(e)\right)
$$

where we define the polynomials

$$
f_{ \pm}^{(n)}(x)=\frac{(x+1)^{n} \pm(x-1)^{n}}{2}=\sum_{m=0}^{n+1} \frac{1 \pm(-1)^{n-m}}{2}\binom{n}{m} x^{m}
$$

${ }^{3}$ Ikeda, "Quasidifferential operator and quantum argument shift method".

Fundamental Formula and Corollary

Commutativity
Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

The center of the universal enveloping algebra

$$
Z(U g I(d, \mathbb{C})) \simeq \mathbb{C}\left[\left(\operatorname{tr} e^{n}\right)_{n=1}^{d}\right]
$$

is a free commutative algebra on the set $\left\{\operatorname{tr} e^{n}\right\}_{n=1}^{d}$. We have

$$
\partial_{\xi}(x) \in \operatorname{span}_{Z}\left\{\operatorname{tr}\left(\xi e^{n}\right)\right\}_{n=0}^{\infty}
$$

for any central element x.

Corollary

The conjecture holds for $m=n=1$. We have

$$
\left[\partial_{\xi}(x), \partial_{\xi}(y)\right]=0
$$

for any central elements x and y.

Generators of Second-Order Quasiderivations

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

We consider the condition

$$
\begin{equation*}
\left[\partial_{\xi}(x), \partial_{\xi}^{2}\left(\operatorname{tr} e^{n}\right)\right]=0 \tag{1}
\end{equation*}
$$

for any central element x and for any n. We have

$$
\begin{aligned}
& \partial_{\xi}^{2}\left(\operatorname{tr} e^{n}\right)=\sum_{m+\ell=0}^{n} \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi f_{-}^{(\ell)}(e)\right) f_{-}^{(n-m-\ell-1)}(e)\right) t_{m-1} \\
&+\operatorname{span}_{z}\left\{\operatorname{tr}\left(\xi e^{i}\right) \operatorname{tr}\left(\xi e^{j}\right)\right\}_{i, j=0}^{\infty}
\end{aligned}
$$

where we define $t_{m}=\left\{\begin{array}{ll}-1, & m=-1 \\ \operatorname{tr} e^{m}, & m \geq 0\end{array}\right.$. We have

$$
\begin{array}{r}
(1) \Leftrightarrow\left[\operatorname{tr}\left(\xi e^{k}\right), \sum_{m=0}^{n+1} \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi f_{-}^{(m-1)}(e)\right) f_{-}^{(n-m)}(e)\right)\right]=0, \\
\forall k, \forall n . \tag{2}
\end{array}
$$

Generators of Second-Order Quasiderivations

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

The summation (2) is spanned by the set

$$
\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{m}\right)\right\}_{m, n=0}^{\infty}
$$

Theorem

We have

$$
\begin{aligned}
\operatorname{span}_{\mathbb{Q}} & \left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{m}\right)\right\}_{m, n=0}^{\infty} \\
= & \operatorname{span}_{\mathbb{Q}}\left\{\partial \xi \operatorname{tr}\left(\xi e^{m}\right)\right\}_{m=0}^{\infty} \\
= & \operatorname{span}_{\mathbb{Q}}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{m}\right),\right. \\
& \left.\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m+1}\right) e^{m}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{m+1}\right)\right\}_{m=0}^{\infty}
\end{aligned}
$$

up to the subspace generated by the set $\left\{\operatorname{tr}\left(\xi e^{i}\right) \operatorname{tr}\left(\xi e^{j}\right)\right\}_{i, j=0}^{\infty}$.

Generators of Second-Order Quasiderivations

Commutativity

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Corollary

The following are equivalent.
1 We have

$$
\left[\partial_{\xi}(x), \partial_{\xi}^{2}\left(\operatorname{tr} e^{n}\right)\right]=0
$$

for any central element x and for any n.
2 The elements $\operatorname{tr}\left(\xi e^{k}\right)$ commute with the elements

$$
\begin{aligned}
& \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{m}\right) \\
& \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m+1}\right) e^{m}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{m+1}\right)
\end{aligned}
$$

Generators of Second-Order Quasiderivations

Commutativity

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Theorem

We have

$$
\begin{aligned}
& \operatorname{span}_{\mathbb{Q}}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m}\right)\right\}_{m, n=0}^{\infty} \\
&=\operatorname{span}_{\mathbb{Q}}\left\{\partial_{\xi} \operatorname{tr}\left(\xi e^{2 m}\right)\right\}_{m=0}^{\infty} \\
&=\operatorname{span}_{\mathbb{Q}}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{m}\right)\right\}_{m=0}^{\infty} \\
& \operatorname{span}_{\mathbb{Q}}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m+1}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m+1}\right)\right\}_{m, n=0}^{\infty} \\
&=\operatorname{span}_{\mathbb{Q}}\left\{\partial_{\xi} \operatorname{tr}\left(\xi e^{2 m+1}\right)\right\}_{m=0}^{\infty} \\
&=\operatorname{span}_{\mathbb{Q}}\left\{\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m+1}\right) e^{m}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{m+1}\right)\right\}_{m=0}^{\infty}
\end{aligned}
$$

up to the subspace generated by the set $\left\{\operatorname{tr}\left(\xi e^{i}\right) \operatorname{tr}\left(\xi e^{j}\right)\right\}_{i, j=0}^{\infty}$.

Key Matrix and Symmetry

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Definition

1 We define P_{n} as the n by n submatrix of the following matrix.

$$
\left(\begin{array}{c}
\vdots \\
f_{+}^{(4)}(x) \\
f_{+}^{(3)}(x) \\
f_{+}^{(2)}(x) \\
f_{+}^{(1)}(x) \\
f_{+}^{(0)}(x)
\end{array}\right)=\left(\begin{array}{cccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\hline 1 & 0 & 6 & 0 & 1 & \ldots \\
0 & 3 & 0 & 1 & 0 & \ldots \\
1 & 0 & 1 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots
\end{array}\right)\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3} \\
x^{4} \\
\vdots
\end{array}\right)
$$

2 We define $P_{n}^{(m)}$ as the matrix P_{n} shifted to the right by m positions.

Key Matrix and Symmetry

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Suppose that A is a numerical square matrix.

Definition

We define

$$
\begin{aligned}
\varphi_{\xi}(A) & =\operatorname{tr}\left(\begin{array}{llll}
\xi & \xi e & \cdots & \xi e^{n-1}
\end{array}\right) A\left(\begin{array}{c}
\xi \\
\xi e \\
\vdots \\
\xi e^{n-1}
\end{array}\right) \\
& =\sum_{i, j=1}^{n} A_{j}^{i} \operatorname{tr}\left(\xi e^{i-1} \xi e^{j-1}\right) .
\end{aligned}
$$

We have $\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{m}\right) e^{n}\right)=\varphi_{\xi}\left(P_{m}^{(n)}\right)$.

Key Matrix and Symmetry

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Definition

We define

$$
\tau(A)=\left(\begin{array}{cccc}
A_{1}^{1} & A_{2}^{1}+A_{1}^{2} & \cdots & A_{n}^{1}+A_{1}^{n} \\
0 & A_{2}^{2} & \cdots & A_{n}^{2}+A_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{n}^{n}
\end{array}\right)
$$

We have $\varphi_{\xi}(A)=\varphi_{\xi}(\tau(A))$ since we have

$$
\operatorname{tr}\left(\xi e^{i} \xi e^{j}\right)=\operatorname{tr}\left(\xi e^{j} \xi e^{i}\right) .
$$

Main Theorem (Matrix Form)

Commutativity
Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Theorem

We have

$$
\tau\left(\begin{array}{cc}
0 & P_{n+2 m} \\
P_{n}^{T} & 0
\end{array}\right)=\sum_{\ell=0}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) P_{n+\ell}^{(n+\ell)}
$$

and

$$
\tau\left(\begin{array}{cc}
0 & P_{n+2 m+1} \\
P_{n}^{T} & 0
\end{array}\right)=\sum_{\ell=0}^{m}\binom{2 m-\ell}{\ell}\left(P_{n+\ell+1}^{(n+\ell)}+P_{n+\ell}^{(n+\ell+1)}\right)
$$

Proof of Main Theorem (Even Case)

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture

First-Order

Second-Order
Conclusion
References

We have

$$
\begin{aligned}
& \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m}\right) \\
& \quad=\varphi_{\xi}\left(P_{n+2 m}^{(n)}+P_{n}^{(n+2 m)}\right) \\
& \left.\quad=\varphi_{\xi}\left(\begin{array}{cc}
\tau & P_{n+2 m} \\
P_{n}^{T} & 0
\end{array}\right)\right) \\
& \quad=\sum_{\ell=0}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) \varphi_{\xi}\left(P_{n+\ell}^{(n+\ell)}\right) \\
& \quad=\sum_{\ell=0}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+\ell}\right) e^{n+\ell}\right) .
\end{aligned}
$$

Proof of Main Theorem (Odd Case)

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

Similarly,

$$
\begin{aligned}
& \operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+2 m+1}\right) e^{n}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n}\right) e^{n+2 m+1}\right) \\
&= \varphi_{\xi}\left(P_{n+2 m+1}^{(n)}+P_{n}^{(n+2 m+1)}\right) \\
&= \varphi_{\xi}\left(\tau\left(\begin{array}{cc}
0 & P_{n+2 m+1} \\
P_{n}^{T} & 0
\end{array}\right)\right) \\
&= \sum_{\ell=0}^{m}\binom{2 m-\ell}{\ell} \varphi_{\xi}\left(P_{n+\ell+1}^{(n+\ell)}+P_{n+\ell}^{(n+\ell+1)}\right) \\
&= \sum_{\ell=0}^{m}\binom{2 m-\ell}{\ell} \\
& \quad\left(\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+\ell+1}\right) e^{n+\ell}\right)+\operatorname{tr}\left(\xi \partial \operatorname{tr}\left(\xi e^{n+\ell}\right) e^{n+\ell+1}\right)\right)
\end{aligned}
$$

Equivalent Condition (Even Case)

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

The first part of the theorem is equivalent to the following.
1 We have

$$
\begin{aligned}
&\binom{2 n_{1}+n_{2}+2 n_{3}+1}{2 n_{3}}+\binom{n_{2}+2 n_{3}}{2 n_{3}} \\
&=\sum_{n_{4}=0}^{n_{3}}\left(\binom{n_{1}+n_{2}+n_{3}+n_{4}+1}{2 n_{4}}+\binom{n_{1}+n_{2}+n_{3}+n_{4}}{2 n_{4}}\right) \\
& \times\binom{ n_{1}+n_{3}-n_{4}}{2\left(n_{3}-n_{4}\right)}
\end{aligned}
$$

for any nonnegative integers $\left(n_{k}\right)_{k=1}^{3}$.

Equivalent Condition (Even Case)

Commutativity

Yasushi Ikeda

Outline

Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

2 We have

$$
\begin{aligned}
& f_{+}^{(n+2 m)}(x)+x^{2 m} f_{+}^{(n)}(x) \\
& \quad=\sum_{\ell=0}^{m}\left(\binom{2 m-\ell}{\ell}+\binom{2 m-\ell-1}{\ell-1}\right) x^{\ell} f_{+}^{(n+\ell)}(x)
\end{aligned}
$$

for any nonnegative integer n.

$$
f_{+}^{(n)}(x)=\frac{(x+1)^{n}+(x-1)^{n}}{2}
$$

These conditions have been verified using Mathematica.

Equivalent Condition (Odd Case)

Commutativity

Yasushi Ikeda

Outline
Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

The second part of the theorem is equivalent to the following.
1 We have

$$
\begin{aligned}
& \binom{2 n_{1}+n_{2}+2 n_{3}+2}{2 n_{3}}+\binom{n_{2}+2 n_{3}}{2 n_{3}} \\
& \quad=\sum_{n_{4}=0}^{n_{3}}\binom{n_{1}+n_{2}+n_{3}+n_{4}+1}{2 n_{4}} \\
& \quad \times\left(\binom{n_{1}+n_{3}-n_{4}+1}{2\left(n_{3}-n_{4}\right)}+\binom{n_{1}+n_{3}-n_{4}}{2\left(n_{3}-n_{4}\right)}\right)
\end{aligned}
$$

for any nonnegative integers $\left(n_{k}\right)_{k=1}^{3}$.

Equivalent Condition (Odd Case)

Commutativity

Yasushi Ikeda

Outline

Introduction
Conjecture
First-Order
Second-Order
Conclusion
References

2 We have

$$
\begin{aligned}
& f_{+}^{(n+2 m+1)}(x)+x^{2 m+1} f_{+}^{(n)}(x) \\
& \quad=\sum_{\ell=0}^{m}\binom{2 m-\ell}{\ell}\left(x^{\ell} f_{+}^{(n+\ell+1)}(x)+x^{\ell+1} f_{+}^{(n+\ell)}(x)\right)
\end{aligned}
$$

for any nonnegative integer n.

$$
f_{+}^{(n)}(x)=\frac{(x+1)^{n}+(x-1)^{n}}{2}
$$

These conditions have been verified using Mathematica.

Conclusion

- In a quantum analogue of the theorem of A. Mishchenko and A. Fomenko, the derivation of the symmetric algebra $S g l(d, \mathbb{C})$ is replaced by the quasiderivation of the universal enveloping algebra $U g /(d, \mathbb{C})$.
- We derived a concrete formula and proved the quantum analogue for order 1. Higher-order quasiderivations can be computed using this formula as well.
■ Complex combinatorial formulas play a critical role in the calculations for the order 2 case. We verified these formulas using Mathematica. Uncovering the representation theory underlying these formulas should be the key to a general proof of the quantum analogue.

References

嗇 Gurevich, Dimitri, Pavel Pyatov, and Pavel Saponov. "Braided Weyl algebras and differential calculus on $U(u(2))$ ". In: Journal of Geometry and Physics 62.5 (2012), pp. 1175-1188.

- Ikeda, Yasushi. "Quasidifferential operator and quantum argument shift method". In: Theoretical and Mathematical Physics 212.1 (2022), pp. 918-924.
(Mishchenko, AS and AT Fomenko. "Euler equations on finite-dimensional Lie groups". In: Mathematics of the USSR-Izvestiya 12.2 (1978), pp. 371-389.

[^0]: ${ }^{1}$ Mishchenko and Fomenko, "Euler equations on finite-dimensional Lie groups".

