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Chapter 1

Introduction and Examples

1.1 Lie Algebras over Fields

Suppose that V' is a vector space over a field F.

DEFINITION 1.1.1
We write hom V' for the endomorphism algebra hom(V, V).

ProrosiTiON 1.1.1
The vector space hom V' is a Lie algebra over F.

Proof. The vector space hom V' is an algebra over F and by Remark of 342 (cf.
Lie Algebras). O

Suppose that L is a Lie algebra over F.

DEFINITION 1.1.2
A representation of L on V is a homomorphism of L into hom V.

DEFINITION 1.1.3
We define (ad z)(y) = [x,y] for ¥(z,y) of L.

ProrosiTiON 1.1.2
The mapping z — ad z is a representation of L on L.

Proof. The mapping ad x is a linear mapping on L for Vzx.
[adz,ady](z) = (ad z)(ad y)(z) — (ad y)(ad z)(z)
= [gjv [yv ZH - [ya [Iv ZH

= - [Zv [‘Ta y]]
= (ad[z,9])(2)

for V(z,y, z). O
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DEFINITION 1.1.4
The mapping = — ad z is called the adjoint representation.

DEFINITION 1.1.5
An invariant subspace for ad(L) is called an ideal.

1.2 The Killing Form on a Lie Algebra

Suppose that L is a finite dimensional Lie algebra over a field F.

DEFINITION 1.2.1
We define

B(z,y) = tr((adz)(ady))
for V(x,y) of L?. The symmetric form B is called the Killing form.

ProrosiTiON 1.2.1 1. The mapping
z = [y — B(z,y)] (1.1)
is a linear mapping of L into L*.

2. The Killing form on L is nondegenerate if and only if the linear mapping
(1.1) is an isomorphism of L onto L*.

PROPOSITION 1.2.2
We have

B((adz)(z),y) = —B(z, (ad 2)(y))
for V(x,y, ) of L3.
Proof. We have
B((ad z)(z),y) = tr(ad[z,z] ad y)
= tr([ad z,ad 2] ad y)

= —tr(adzadzady — ad zad x ad y)
= —tr(adz(adzady —adyad z))

= —tr(admad((ad z)(y)))
= —B(z,(ad2)(y)). O
We identify
T11
M(2,IF)<—>]F4, <$11 £U12> o T12
T21 T22 Z21

Z22
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Then we have
ad (@ b w2 | o b\ (z11 =12
c d) | xzn ¢ d) \®a1 2
( >(xu xu)(xu xu) <a b>
T21 T22 To1 T22 c d

—C£E12 -|— ble —blCll + (a — d)l’12 + b.’EQQ
cr11 + (d — a)xoy — cxag cx12 — bxoy

—CI12 + bl‘gl

o 7b.’£11 -+ (a — d)$12 + bl’QQ
| oexin+ (d—a)xey — cxan
cx12 — bxoy
0 —C b 0 T11
o —b a—d 0 b T12
| c 0 d—a —c To1
0 Cc —b 0 X292

for V (Z Z) of M(2,F).

ProrosITION 1.2.3 1. Suppose that {eij}:njzl denote the matrix units. Then
we have

0 —c b 0
-b a-—d 0 b

0 d—a —c
0 c —b 0

a b
ad c d (611761276217622):(611761276217622)

for V (Z Z) of M(2,F).

2. The Killing form on the Lie algebra M (2,T) is given by

o((¢0)C 2)

0 —c b 0 0 —r q 0
—tr —b a-—d 0 b —q p—35 0 q
c 0 d—a —c r 0 s—p -r
0 c —b 0 0 r —q 0

=4(br +cq) +2(a—d)(p—s)

forV((CcL Z)(ﬁ ‘;)) of M(2,F)2.
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B(<‘C‘ 3)@ Z)>_8bc+2(a—d)2

for V (Z b> of M(2,F).

3. We have

d

ProroOSITION 1.2.4
The set of traceless matrices

{zeM(mF):trz=0}
is an ideal of the Lie algebra M (m,F) for Vm and
dim{z € M(m,F) :tra =0} =m? —1
for Vm > 1.

Proof. The set {eij}#ju{eii—ei+1,i+1}:.':11 is a basis of { x € M(m,F):trox=
0} for Vm > 1. O

We identify

{xEM(Z,F):trajzo}HF?’,

T11
X X
1 12 = ZL‘11H + IL‘12X + IE21Y < | T12 ),
Tr21 —T11 To1

where

10 01
ie(o ) =)y

is a basis of { z € M(2,F) : trz = 0 }. Then we have

T11
ad (CL b) T1o —ad (a b) (3311 12 )
c —a c —a 21 —T11

T21
—cr12 +bxror  —2bx11 + 20712
28$11 — 26[3321 CT12 — b$21

()

—cx12 + bray
= | —2bx11 + 2ax12
20.2311 — 2@1‘21

0 —C b 11
= —2b 2a 0 T12
2c 0 —2a T91

forV(CCL _ba> of {z e M(2,F):trz=0}.
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ProrosiTiON 1.2.5 1. We have

a b 0 —c b
ad< )(H,X,Y):(H,X,Y) —2b 2a 0
c —
2c 0 —2a

a b
forV(C —a) of {z € M(2,F):traz=0}.

2. The Killing form on the Lie algebra { 2 € M(2,F) : trz =0} is given by

o((e %G 5)

0 —c b 0 —r q
=tr —2b 2a 0 —2q 2p 0
2¢c 0 —2a 2r 0 —2p

= 4(br 4+ ¢q) + 8ap

forV((i _ba> : <f _qp>> of {z € M(2,F):tre =0}".

ProprosITION 1.2.6
The set of upper triangular matrices

{z e M(m,F):2;;=0for Vi >Vj}
is a Lie subalgebra of M(m,F) for ¥Ym.
We identify

Z11
{(E S M(Q,IF) 1 To] = 0} Ad F?), (.1311 1‘12) | T12

Then we have

al® b ﬁu _ad b\ (w11 712
a 0 ¢ 12 —a & 0 X9
(0 —bz11 + (a — ¢)z12 + broa
—\0 0

;
(o

forV(g i) of {zx € M(2,F): 2y =0}.

bx11 -|- a— C)l‘lg + b

T11
T12
22

b a—c

o oo O
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ProrosiTiON 1.2.7 1. We have

a b 0 0 0
ad (0 c) (e11,€12,€22) = (e11,€12,€22) | =b a—c b
0 0 0

forV(g i) of {zx € M(2,F): 2y =0}.

0 0 0 0 0

2. The Killing form on the Lie algebra {x € M(2,F):291 =0 } is given by
0
q>):tr —b a—c b —q p—r ¢
" o 0o o/ \0o 0 0

7 2)(
= (@~ p-7)

forv(<g g) : (75 7‘{)) of {z € M(2,F): 29 =0},

3. The Killing form on the Lie algebra { # € M(2,F) : 231 =0 } is degener-
ate.

o3

Proof. ) ((8 (bj) | (é (f)) y

a b
forV(o c> of { € M(2,F): a9 =0}. O

PROPOSITION 1.2.8
The set of strictly upper triangular matrices

{z e M(m,F):2;;=0for Vi >Vj }
is a Lie subalgebra of M (m,TF) for ¥Ym.

We identify

‘ 0 x12 =13 12
{ze MB,F):a;;=0forVi>Vj} < F [0 0 x| ¢ |23
0 0 0 T23
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Then we have

0 a b X192 0 a b 0.1312 13
ad|0 0 ¢ zi3| =ad [0 0 c¢] [0 O x93
0 0 O To3 0 0 O 0 O 0
0 0 —cxi9+axss
=0 0 0
0 0 0
0
= | —cr12 + arass
0
0 0 0 T12
=|—-c 0 a T13
0 0 0 I3
0 a b
for V[0 0 c| of {we M(3,F):a; =0forVi>Vj}.
0 0 O
ProrosiTioN 1.2.9 1. We have
0 a b 0 0 O
ad |0 0 c | (e12,€13,€23) = (e12,€13,€23) [ —¢ 0 a
0 0 O 0O 0 O
0 a b
for V|0 0 c| of {zeM(@3,F):ay;=0forVi>Vj}.
0 0 O

2. The Killing form on the Lie algebra { x € M(3,F) : x;; = 0 for Vi > Vj }

is given by
0 a b 0 p g 0 0 0 0 0 0

B 0 0 ¢|,|0 O r =tr —c 0 a —-r 0 p =0
0 0 0 0 0 0 0 0 0 0 0 0

0 a b 0 p ¢q )
for vV 0 0 ¢],{0 0 r of{xeM(?),]F):xij:OforViZVj}.
0 0 O 0 0 O

3. The Killing form on the Lie algebra {x € M(3,F) : z;; =0 for Vi > Vj }
is degenerate.

ProrosiTION 1.2.10
The set of alternating matrices

{zeMmF):2a" = -2}

is a Lie subalgebra of M (m,TF) for ¥Ym.
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ProrosiTIiON 1.2.11
‘We have

B(z,y) = 2mtr(xy) — 2(tr z)(tr )
for Vz of M(m,T).

Proof. Suppose that A is an algebra over F and let (z,y) be an element of A2.

R(z))(L(y) — R(y))
L(z)R(y) — R(z)L(y) + R(yx).

(adz)(ady) = (L(z)
= L(zy)

Suppose that A is finite dimensional.

B(z,y) = tr L(zy) — tr(L(m)R(y)) - tr(R(a:)L(y)) + tr R(yx).

Suppose that A = M (m,F). Since

tr L(z) = Z (zeij)ij = Z Ty =mitrx
ij=1 ij=1
tr(L(m)R(y)) = Z (zeijy)i; = Z iy = (tra)(try)
ij=1 ij=1
tr R(z) = Z (eijx)ij = Z xj; =mtrez,
i,j=1 i,j=1
we have B(z,y) = 2mtr(zy) — 2(tr z) (try). O

ExAMPLE 1.2.1
We have

p((¢a)- ()=o) 0 1) 2 0)eC )
d(ap+br+cqg+ds) —2(a+d)(p+s)
=4(br+cq)+2(a—d)(p—s)

forV((CCL Z)(f g)) of M(2,F)2.

ProrosiTiON 1.2.12
Suppose that Ly is an ideal of L.

1. The vector space L/Lg is a Lie algebra.

2. The Killing form on Lg is the restriction of the Killing form on L.
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Proof. There exists a basis {ej}}_; of L such that {ej};%, is a basis of Ly. We
define {fr}}'_; to be the dual basis of {ex}}_;.

B(z,y) =Y fr((adz)(ady)(er))

k=1

=3 fi((ada)(ady)(er))

k=1
for V(z,y) of L3. O

ExaMPLE 1.2.2 1. The Killing form on the ideal {:v € M(m,F) : trz = 0} of
the Lie algebra M (m,TF) is given by

B(z,y) = 2mtr(xy)
for V(z,y) of {z € M(m,F) : tro = 0}2.

2. The Killing form on the ideal {x € M(2,F) :trz = O} of the Lie algebra
M(2,T) is given by

p((¢ 26 5) = (26 5)

=4(br + cq) + 8ap

forV((CCL _ba> : (f fp)) of {w € M(2,F):trz =0}

PROPOSITION 1.2.13
Suppose that J is an element of M (m,TF).

L={zeMmF):a"J+Jz=0}
is a Lie subalgebra of M(m,F).

Proof. Suppose that = and y are elements of L.

(2" + Jw,y] = (70" = a"y") T+ Tz,

=—y"Jz+ 2" Jy + Jlx,y]
= Jyz — Jzy + J[z, ]
=0

and the element [z, y] belongs to L. O

PropPoOSITION 1.2.14

. (0 1 0 1 . o2
d1m{x€M(2m,F).x (_1 O)—l—(_l O)x—O}—Qm +m.
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1
0
T
T Ty 0 1 0 1\ (z11 =12\ _
(o) (o) (5 o) (G 22) -
T T
(TR )
22 11 Ty — T12

for Vz of M(2m,F).
The set

{eij - €m+j,m+i}zlj=1 U {ei,m+i}:r;1 U {ei,m+j + ej,m+i}1gi<jgm
U {em—&-i,i}:il U {em—&-i,j + em"'jvi}lgi<j§m

is a basis of the Lie algebra. O

1.3 Examples of the Killing Forms
Suppose that F is a field such that char(F) # 2.
PROPOSITION 1.3.1
The Killing form on the ideal {z € M(2,F) : trz = 0} of the Lie algebra
M(2,F) is nondegenerate.

Proof. Suppose that = is an element of {x € M(2,F) : trax = 0} such that
[y — B(z,y)] = 0. Then we have

= B(z,8 'H)H + B(z,4A'V)X + B(z,47'X)Y =0. O

PROPOSITION 1.3.2

We have
Blae.y) — B(z+y,z+y) *QB(:v,fr) —B(y,y)
for V(z,y) of L2
We identify
0 Ti2 13 T12
{ze M(3,F): 2" = -2} < F, —z12 0 @3 | & | 713

—r13 —w23 0 T23
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Then we have

0 a b T12 0 a b 0 T12 I13
ad|—a 0 ¢ r13]| =ad|—a 0 ¢ —T19 0 To3
b —c O Io3 b —c 0 —x13 —X23 0
0 CTr13 — bSE23 —Cx12 + axros
= —Ccx13 + b$23 0 bil'12 — ari13
CT12 — AX23 —b$12 + ax13 0
CTx13 — b$23

= | —cx12 + azas
bxris — awy3

0 & -b Xr12
=|—-c O a T13
b —a 0 23
0 a b
forV|[—a 0 ¢ of{xeM(3,F):xT:—x}.
b — 0
ProrosiTioN 1.3.3 1. We have
0 a b
ad | —a 0 c| (e12 —e21,e13 — €31,€23 — €32)
b —c 0
0 c —b
= (e12 —e21,e13 —esz1,e3 —ez2) | —¢ 0 a
b —a 0
0 a b
forV|—-a 0 c|of{zeM@B3F):a” =—-z}.
-b —c 0

2. The Killing form on the Lie algebra {x € M(3,F): 27 = —x} is given by

0 a 0 P q
B —a 0 c¢],l-p O r
b —c 0 —q —r 0

0 a b 0 p ¢ ,
for V —a 0 c¢|,|l-p O r Of{xeM(S,F):xT:—x}.
b —c 0 —q -1 0
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3. We have
0 a b 0 a b
Bll-a 0 c¢|,|-a 0 c|]|==2("+0"+¢)
b —c 0 b —c 0
0 a b
forV|—a 0 c|of{zeM@B3F):al=-z}.
b —c 0

ProprosiTION 1.3.4 1. We have

dim{z € M(m,F) : :—x}—il).

2. The Killing form on the Lie algebra {J: € M(m,F): 2T = —x} is given
by
B(a,y) = (m — 2) tr(ay)

for V(z,y) of { x € M(m,F) :fx}

3. The Killing form on the Lie algebra { z € M(3,F) : 2 = —x } is given by

0 a b 0 P q
B —a 0 c¢],l-p 0O r
b —c 0 —q —r 0
b 0 p ¢
c -p 0 7 = —2(ap+bg + cr)
—c 0 —q —r 0
p q 9
for v —a 0 cl,l-»p 0 ~r of {z € M(3,F):2” =—a}".
b —c 0 —q -1 0

Proof. The set {e;; — eji}i<j is a basis of { # € M(m,F) : 27 = —xz }. Suppose
that  is an element of { x € M(m,F) : 27 = —z }.

B(z,x) = Z((adx)z(eij - eji))ij
= Z(wQ(eij —ej;) —2x(e;; —eji)r + (€55 — eji);vQ)ij
=D (@i + 223 + (a%) )

= (m — 1) trz? +2Zx?j,

i<j
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where
2 2 2 2 2
2Y aly = wl Y wn=) wh )
i<y i<y j<i i<j j<i
m m
= mej = Z xfj = - Z TijTi; = —tra?.
] ij=1 ij=1
B(z,z) = (m — 2)tra°.
B(z,y) = (m = 2) tr(zy)
for V(z,y) of{xeM(m,IF):xT:—x}z. O

ExamMpPLE 1.3.1 1. The Killing form on the Lie algebra {m € M(2,F) : 27 =
—:v} is not the restriction of the Killing form on the Lie algebra {x €
M(2,F):trz=0}.

2. The Lie algebra {z € M(2,F) : 27 = —z } is not an ideal of the Lie
algebra {m € M(2,F) :trz=0 }

Proof. We have

2

0 1 0 1 0 1
mwe (4 0) (1 0)) = 2=( o)
1 0

——4tr(0 1)

— 840 O

ProrosiTION 1.3.5
The Killing form on the Lie algebra

L{xEM(2m,IF):xT (_01 (1)>+<_01 (1)>z0}

is given by

Ba,y) = 2(m + 1) tr(ay)

for V(x,y) of L?.
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Proof. Suppose that = is an element of L.

m
F= Z (xQ(eij - €m+j>m+i))ij
ij=1
m
+ Z($2€i,m+i)i,m+i + Z (z*(€im+s + ej,m+i)>i,m+j
i=1 1<i<j<m
m
+ Z(:L' Em+i, 1)m+1 i+ Z em—i—i,j + em+j,i))m+i7j
=1 1<i<j<m
m
Z z%eij)ij Z((eri mi)ismti + (T2 €mtii)mtis)
J=1 i=1
+ Z (T%€imtj)ism+i + ($2€m+i,j)m+i,j)
1<i<j<m
m
=Y @)t D (@i + @mgimri)
i,j=1 1<i<j<m
_ 2 2 2
=mtr(z]; + T12221) + Z (($ )ii + (x )m+i,m+i)'
1<i<j<m
m m
H = Z (eiij)ij + Z((ei,m+ix2)i,m+i + (em-‘ri,ixQ)m-‘ri,i)
ij=1 i=1
+ Z (e ,m+jL )i ;m4j T (€7n+i7jm2)m+i,j)
1<i<j<m
m
=Y @)+ Y. (@mpimes + @7)55)
1,j=1 1<i<j<m
=mtr(af, + z12021) + Y (@)mtimss + (@%)55).
1<i<j<m

tr(z?) = tr(zi; + z12221) + tr(z21212 + 23,)

= 2'61"(33%1 =+ 23123321).

F+ H =mtr(z?) + (m + 1) tr(z?)
= (2m + 1) tr(2?).
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m

G =) (@ii; = TimtjTmti;)
Q=1

+ § xumerz m—+1 + E xzi‘rm+j,m+j + xijxm+i,m+j)
1<i<j<m

+ § xm—i—z m+iLii + E xm-i—i,m-ﬁ—i-pjj + mm-&-i,m-{-jxij)

1<i<j<m
m m
==Y wywii— Y (T12)ij(w21)ij = — tr(@, + z12291).
Q=1 ij=1

B(z,z) = F+ H — 2G = 2(m + 1) tr(z?).
B(z,y) = 2(m + 1) tr(zy)
for V(x,y) of L?. O

PROPOSITION 1.3.6
The Killing form on M (m,F) is degenerate for ¥m > 1.

Proof.
B(z,1) =2mtraz —2(trz)(tr1) =0

for Vo of M(m,TF). O

1.4 Lie Algebras over Fields of Characteristic
Two

Suppose that F is a field of characteristic 2.
ProposSITION 1.4.1 1. We have
1
dlm{meM( :—x}—mi—’—).

2. The Killing form on the Lie algebra {x € M(m,F) : 2T = —x} is given
by
B(x,y) = mtr(zy) — (trz)(try)
for V(x,y) of {x € M(m, z—w}
Proof. The set {eij +eji}i<ju{eii}i:1 is a basis of { xr € M(m,F): 2T = -2 }
Suppose that (z,y) is an element of { z € M(m,F) : 27 = —z }2.
B(z,y) = tr((ad z)(ad y))

= ((ada)(ady)(ei; +¢;0)),; + Y ((adz)(ad y)(ew)) ;-

i<j i=1
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> ((ad)(ady)(es; + 1)),

1<j

= Z(my(eij +eji) — x(eij + i)y — yleiy + i) + (eij + 3ji)yx)ij

1<j
= ((@)is — wisyss — viiwss + (yx) )
i<j
=D ((@y)ii — zisyj;) = mtx(ay) — (tra)(try).
1#]
Z((ad x)(ad y)(eii))n‘ = Z(Iyeii — TeiiY — YeiuiT + €iiYT)ii
i=1

- Z(("EC‘/)“ + (yx)i;) = 0.

B(z,y) = mtr(zy) — (trz)(try). O

1.5 Lie Algebras over Fields of Characteristic
Zero

Suppose that F is a field of characteristic 0.

THEOREM 1.5.1
The Killing form on {x € M(m,F) :trax = 0} is nondegenerate.

Proof. We may assume that m > 1. Suppose that x is an element of {x €
M(m,F) : trz =0} such that [y — B(z,y)] = 0.
Ti5 = tr(meji) =0

for Vi # Vj and we have

since
Tii — Tig1,i41 = tr(z(es — €i41,i41)) =0
for Vi < m. O
THEOREM 1.5.2
The Killing form on {x € M(m,F):aT = —x} is nondegenerate for Vm > 3.
Proof. Suppose that z is an element of { z € M(m,F) : 7 = —z } such that
[y = B(z,y)] =0.

- Tij = Tji _ _tr(w(eij —eji)) .

2 2
for Vi < Vj. O
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THEOREM 1.5.3
The Killing form on

L:{xEM(Qm,IF):xT (01 é)+<01 (l))sz}

is nondegenerate.

Proof. Suppose that x is an element of L such that [y — B(x, y)] =0.

Tij — Tmtgmai  0(2(€ji — €myimsj))

Tij = B) = B) =0

C Tjmti+ Timey  (@(emiig temisi)
Tim+j = 5 = 9 =0

_ Tmtgi T Tmtig tr(x(ezvmﬂ' + €j7m+i)) _
Tm+ij = 9 = 9 =0

for ¥(i,7) of {1, . 7m}2.

21
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Chapter 2

Fundamental Theorems

2.1 Engel’s Theorem
DEFINITION 2.1.1
A Lie algebra L is said to be nilpotent if eventually
L,[L,L],[L,[L,L]],...,{0},....

ProrosIiTION 2.1.1
A Lie algebra L is nilpotent if and only if

{ (adxy)---(adxy) : (zx)feqy € L" } = {0}
for some n.

PrROPOSITION 2.1.2
Suppose that L is a nilpotent Lie algebra. Then the set ad L is a subset of

{2z € hom L : z is nilpotent } = { € hom L : 2" = 0 for some n }.

ProproOSITION 2.1.3
Suppose that V; is a subspace of a vector space V.
1 {ex + VO}Z:Wr1 is a basis of V/Vj if {ek}zz1 is a basis of V such that
no . .
{ek}k:1 is a basis of V4.

2. {ek}zzl is a basis of V if {ek}zozl is a basis of V and {ek + Vo
is a basis of V/V.

}Z:no+1

Proof. Suppose that V' is a vector space over a field F.
1. Suppose that {ek}z:l is a basis of V such that {ek}zozl is a basis of Vj.
Suppose that {Vk}zznoﬂ is a subset of F such that

n

Z I/k(ek + Vo) =0.

k=ng+1

23
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The vector

belongs to Vj and we have {Vk}Z:no-i-l = {0}.

Suppose that v + Vj is an arbitrary vector of V/Vj. There exists a subset
n
{Vk}kzl of F such that
n
v = Z Vi€l
k=1

n

v+ V= Z Vk(ek—‘rVO).
k=no+1

and we have

. Suppose that {ek}zozl is a basis of V and {ek + VO}Z:nOH is a basis of

V/Vo.
Suppose that {l/k}zzl is a subset of F such that

n
E Ve = 0.
k=1

We have

n

Z Vk(ek =+ VO) =0

k=no+1

and {Vk}::no+1 = {0}. We have

no
E Vi€ = 0
k=1

and {Vk}zozl = {0}.

Suppose that v is an arbitrary vector of V. There exists a subset {I/k }Z:no
of F such that

+1
n

v+Vy = Z vi(ex + Vo).
k=no+1

There exists a subset {I/k}zozl of F such that
n no

v — Z Vg€ = Zukek
k=no+1 k=1

and we have

n
vzg vpep. O
k=1
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DEFINITION 2.1.2
Suppose that z is a linear mapping on a vector space V and let V[, be an invariant
subspace for z.

1. We define a linear mapping xy, on Vy by
xv, (vo) = z(vo).
2. We define a linear mapping xv/y, on V/Vj by
zy v, (v + Vo) = x(v) + V.

ProroOSITION 2.1.4
Suppose that x is a linear mapping on a vector space V and let V{) be an invariant
subspace for z.

iave *
V=VyaV/V, =TV .
0 /0 <0 xV/Vo)

ProroSITION 2.1.5
Suppose that Vj is a subspace of a vector space V.

1. The set
{2 € homV : Vj, is an invariant subspace for z } (2.1)

is a subalgebra of the algebra hom V.
2. The mapping
{;v € homV : V} is an invariant subspace for x } — hom V}
is a homomorphism of algebras.

3. The mapping
{:1: € homV : V} is an invariant subspace for m} — hom V/Vj

is a homomorphism of algebras.

COROLLARY 2.1.1
Suppose that p is a representation of a Lie algebra L on a vector space V and
let Vp be an invariant subspace for p(L).

1. The mapping x — p(z) is a homomorphism of L into the Lie algebra (2.1)).

2. The mapping
2 puy () = [ pla)o]

is a representation of L on V.
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3. The mapping
z = pyvy(x) = [v+ Vo = p(z)v + Vo]

is a representation of L on V/Vj.

ple) = (p%()(x) Pv/\:) (x))
for Vz.

COROLLARY 2.1.2
Suppose that Ly is a Lie subalgebra of a Lie algebra L.

xo — adp,r, vo = [x + Lo — (ad zp)(z) + LU]
is a representation of Ly on L/Ly.

PROPOSITION 2.1.6
Suppose that Ly is a Lie subalgebra of a Lie algebra L.

ProrosiTiON 2.1.7
ker x # {0} if = is a nilpotent linear mapping on a vector space V' # {0}.

Proof. We may assume that z # 0. We define n = min{n : 2" =0} > 1. There
exists a vector v such that 2" 1v # 0. We have z(z"1v) = 2"v = 0. O

ProrosITION 2.1.8
ad z is nilpotent if x is a nilpotent linear mapping on a vector space.

Proof. We define n = min{n : 2" =0}.

2n
(adz)? =3 (2:) L(@)*(~1)>"*R(z)** =0. O

k=0

THEOREM 2.1.1
Suppose that V' £ {0} is a vector space over a field F and let L be a finite
dimensional Lie subalgebra of hom V. Assume that x is nilpotent for Vz of L.

ﬂ ker x # {0}.

€L

Proof. Suppose that dim L = 0.

ﬂ kerx =V # {0}.

xEL
Suppose that dim L > 0 and let £(™) be the set

{a Lie subalgebra of L of dimension n}
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for Vn. We remark that the set £(°) = {{0}} is not empty. We define
n= max{ n€{0,...,dimL — 1} : the set L™ is not empty}
and let L,, be an element of £(™. We have

Vi = m ker x,, # {0}

Tn€Ln

by the induction hypothesis. We remark that the linear mapping ady,r, ©, is
nilpotent for Vz,, of L,, by Proposition [2.1.8] We have

ﬂ ker(adL/Ln l'n) 7é {O}

Tp€Ln

by the induction hypothesis.

x+ Ly € ﬂ ker(adr,r, ©n) \ {0} & = € ﬂ (adp ) Y (Ln) \ L.

Tpn€Ln Tpn€Ln

Suppose that x is an element of

() (adp )™ (Ln) \ L.

2, €Ly
The set L,, + Fx belongs to £+ We have L = L,, + Fz.
zn2Vy, = ((ad 2y) () + z2,)V, = {0}
for Vx,, of L,. The subspace V,, is invariant for x.

ﬂ kerx = kerz NV, # {0}
€L

by Proposition [2.1.7] O

ENGEL’S THEOREM
Suppose that V is a finite dimensional vector space over a field IF and let f be a
representation of a Lie algebra L on V such that each f(z) is nilpotent. There
exists a basis such that the matrix representation of each f(z) is strictly upper
triangular.

Proof. The proof is by induction on dim V. We may assume that dim V' > 0.

() ker f(x) # {0}
z€L

by Theorem [2.1.1] and let e; be an element of
() ker f(x) \ {0}.

xEL
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We have f(L)(e1) = {0}. A subspace Fe; is invariant for f.

fw) = (8 fV/Ft1($)>

for Vo and each fy /g, () is nilpotent. O

COROLLARY 2.1.3
A finite dimensional Lie algebra is nilpotent if and only if each ad z is nilpotent.

Proof. Suppose that each ad z is nilpotent. There exists a basis such that the
matrix representation of each ad x is strictly upper triangular by Engel’s theo-
rem. We write n for the dimension of the Lie algebra. We have

{(adz1) - (ad ) : (z)f—y } ={0}. O

COROLLARY 2.1.4
Suppose that V is a finite dimensional vector space. A Lie subalgebra L of
hom V is nilpotent if each element of L is a nilpotent linear mapping on V.

Proof. Suppose that x is an element of L. The element adyon, v « is a nilpotent
linear mapping on hom V' by Proposition and the subspace L is invariant
for adpom v . The element ady, x is a nilpotent linear mapping on L. The finite
dimensional Lie algebra L is nilpotent by Corollary [2.1.3] O

COROLLARY 2.1.5
Suppose that F is a field. The set of strictly upper triangular matrices

{z e M(m,F) : z;; =0 for Vi > Vj }
is a nilpotent Lie subalgebra of M (m,F) for Vm.

Proof. By Proposition and Corollary O

COROLLARY 2.1.6
Suppose that L is a finite dimensional nilpotent Lie algebra. There exists a
basis of L such that the matrix representation of each adx is strictly upper
triangular.

COROLLARY 2.1.7
The Killing form of a finite dimensional nilpotent Lie algebra is trivial.

COROLLARY 2.1.8
Suppose that V is a finite dimensional vector space over a field F and let =
be a nilpotent element of hom V. There exists a basis such that the matrix
representation of x is strictly upper triangular.

Proof. The subspace Fx is a Lie subalgebra and by Engel’s theorem. O
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2.2 Lie’s Theorem

DEFINITION 2.2.1
A Lie algebra L is said to be solvable if eventually

L,[L, L], [[L, L], [L,L]],...,{0},....

ProproOSITION 2.2.1
A nilpotent Lie algebra is solvable.

Suppose that p is a representation of a Lie algebra L on a vector space V.
Suppose that Lg is an ideal of L and let fy be a linear functional on Ly. We

define
Vi, = {v : p(xo)v = fo(xo)v for Vg }

Suppose that (z,v) is an element of L x V.

PRrROPOSITION 2.2.2
plaeo)p(e)'s = 3 (-1)* () fol(ad o) au) o) ~*o
k=0
for V(zg,n) of Lo x Z*.
Proof.
plwo), p(@)] + plw)p(a0) ) ()"~ (@)

pleo)p(a)"v = ([
= p([z0,2]) pl)" "0 + p(x)p(z0) p(z)" ()

p([‘r()v
(—1)* <n ; 1 (fo((adx)k[zo’x]) + p(z) fo((ad I)kx0)>p(x)nflfkv

k=0
n—1
_k:()
= Y w(n— 1 adz)"z )"y
=3 (12 1) ol en)oto)
e 0" ) ol ol
k=0

DEFINITION 2.2.2
We write U, for the subspace generated by {v, p(z)v,...,p(z)""'v} for Vn.

PROPOSITION 2.2.3
n+1 . We have

Suppose that dimV < oo and let n
nfo((adz)zg) = 0 for Vg of Lo.

= min{n : U, =
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Proof. We have dimU,, = n.

p(aco)(v, plx)v, ..., p(x)"_lv) = (v, plx)v, ..., p(m)"_lv)
= (v, p(z)v,...,p(x)" v)

(e + 32 07 (7 Ja(atariaes) @

by Proposition We define A(x) by

p(@) (v, p(x)v, ..., p(x)" ') = (v, p(z), ..., p(x)" 'v) A(z)

and A(zg,z) by

p(0) (v, p(@)0, o ()" 0) = (v, (@), . ., pl)" " 0) Ao, 7).

nfo((ad z)zg) = tr A((ad )z, z)
= tr((ad A(z)) A(zo, x)) =0

by the equation (2.2)). O

PROPOSITION 2.2.4
Suppose that dim V' < oo and the underlying field is of characteristic 0.

Vi, = {v:plzo)v = folwo)v for Vao }
is an invariant subspace for p.

Proof. We may assume that Vy, # {0}. Suppose that (z,v) is an element of
L x Vi, \ {0}.

n=min{n:U, =Up41 } > 1.
Suppose that (z,x) is an arbitrary element of L x Ly.
fo((adx)a:o) =0
by Proposition [2.2.3
p(z0)p()0 = folwo)p()v — fo((ad 2)zo)u
= fo(zo)p(z)v

by Proposition and the subspace Vy, is invariant for p. O
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THEOREM 2.2.1
Suppose that p is a representation of a finite dimensional solvable Lie algebra
over an algebraically closed field of characteristic 0 on a finite dimensional vector
space V' # {0}. There exists a linear functional f such that

Vi ={v:p(x)v=f(z)v for Va } # {0}.

Proof. We write n for the dimension of the Lie algebra L and the proof is by
induction on n. Suppose that n > 0. There exists a subspace Lg of dimension
n — 1 containing [L, L]. The subspace Ly is a solvable ideal. There exists a
linear functional fy on Lg such that

Vi = {U : p(xo)v = fo(zo)v for Vag } # {0}

by the induction hypothesis. The subspace V7, is invariant for p by Proposition
224

Suppose that z is an element of L\ Ly. The linear mapping PVy, (2) has an
eigenvalue v since the underlying field is algebraically closed. Suppose that v is
an element of ker(v — PVy, (z)) \ {0}. There exists a unique linear functional f
extending f such that f(x) = v. The vector v belongs to Vj. O

LIE’S THEOREM
Suppose that p is a representation of a solvable Lie algebra over an algebraically
closed field of characteristic 0 on a finite dimensional vector space. There exists
a basis such that the matrix representation of each p(x) is upper triangular.

Proof. We write n for the dimension of the vector space V' and the proof is by
induction on n. Suppose that n > 0. There exists a linear functional f such
that

Vi ={v:px)v = f(z)v for Va } # {0}
by Theorem
We write F for the underlying field and let e; be a vector of Vy \ {0}. The

subspace Fe; is invariant for p. There exists a basis {ej + ]Fel}ZZQ such that
the matrix representation of each py ., (7) is upper triangular by the induction

hypothesis.
_ ([f@) *
ple) = ( 0 PV/Feq (ﬂﬁ))

for Vzx. O

PROPOSITION 2.2.5
Suppose that R; is a commutative ring with ideneity and let Ro be a subring
with identity of R;. The ring R; is a commutative algebra with identity over
Rs.

Proof. Thering Ry is a unital module over Ry such that (vov11)v12 = va(v11012) =
1/11(1/21/12) for V(Vllv V19, 1/2) of R% X RQ. O]
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Suppose that Ry is a commutative ring with identity and let R; be a com-
mutative algebra with identity over Rs.

PROPOSITION 2.2.6
A unital module over R; is a unital module over Rs.

Proof. Suppose that X is a unital module over R;.
Suppose that (o, 1, 22) is an arbitrary element of Ry x X2. We have

vo(x1 + x2) = (v2lg, ) (1 + x2)
= (volp, )71 + (v2lgr, )72
= VoX1 + V2X2.

Suppose that (vo1, 92, ) is an arbitrary element of R x X. We have

(Vo1 + va2)z = ((vo1 + v22) 1R, )
= (v21lR, + vo2lR,)z
= (vo1lRg,)x + (v22lr,)z
= 21X + V22X

and we have
(varvos)w = ((va1ve2)lR, )@
= ((v211g,)(vo2lg,))x

(y21131)((1/22131)$)

= o1 (V22).
Suppose that z is an arbitrary element of X. We have

1R2$ = (IRQIRI)Z‘
= 1311'
= XI. D

Suppose that X7 is a unital module over Ry and let X5 be a unital module
over Rs.

ProroSITION 2.2.7
The tensor product X; ® X5 is a compatible unital module over R;.

Proof. Suppose that vy is an element of R;. A mapping
X1 x Xy = X1 ® X, (1, 22) = (1121) ® T2
is bilinear over Ry since

(Vl(szUl)) QT2 = (Vz(l/wl)) QT2 = V2((V1331) Y 552)
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for Vv of Rs.
21 @ Ty = (1121) @ a9
defines a unique homomorphism over Ry on X7 ® X5. We define

n

n
21 Zl‘lk & Top = Z(lelk) ® Tak

k=1 k=1

for Vv1 of Ry and for

n
Vo = E L1k ® Tog
k=1

of X1 ® X5. Suppose that

n
(r11, 12, = E T1k Q Tog)
=1

is an arbitrary element of R} x (X; ® X3). We have

n

(r11 +vig)z = Z((Vu + V12)3611c) @ Tk

k=1
n n
= Z(Vuﬂhk) @ Tak + Z(wauc) @ T2k
k=1 k=1

= V11X + V12X

and we have

n
(rviz)r = Z((V11V12)$1k) @ Tag
k=1
n

=11 Z(VIZ-le) & Tog
k=1

=111 (Vlgw).

We have

n

lp,z = Z(lRlxlk) R Top = .
k=1

The tensor product X; ® X5 is a unital module over R;.
Suppose that v, is an arbitrary element of Ry. We have

n n

vow =Y (vowiy) ©xop = Y _((valp,)71k) © wok = (21p, ). O
k=1 k=1

PROPOSITION 2.2.8
Suppose that X and Y are unital modules over R;. A homomorphism over R
of X into Y is a homomorphism over Rs.
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Proof. Suppose that f is a homomorphism over R; of X into Y and let (v2, )
be an arbitrary element of Ry x X. We have

f(rax) = f((ralg,)z)
= (volg,)f(2)
= I/Qf(fﬂ). O

PROPOSITION 2.2.9
Suppose that R is a commutative ring with identity and let (Xj)7_, be a finite
sequence of unital modules over R. Suppose that Y is a unital module over
R. The unital module hom(Q);_; Xx,Y) is the set of multilinear mapping of
@,_, Xi into Y.
Dioy Xe —=Y

|
Qo1 X

THEOREM 2.2.2
We have hole (Rl X X27X1) = hOIIlR2 (Xg,Xl).

Xo

|

R ® Xo

Xy

Proof. By Theorem of 487 (cf. Algebra). O

Suppose that Y7 is a unital module over R; and let Y5 be a unital module
over Rs.

COROLLARY 2.2.1
The mapping

hOIIlR2(X2,}f2) - hole (Rl & X27R1 @ YQ)’ f — [1 RQr—1® f(l’)]

is a homomorphism over R;.

Xs —— Y

l |

Ri®Xy —— Ri®Y;

COROLLARY 2.2.2
Suppose that Y is a unital module over R, and let (X)}_; be a finite sequence
of unital modules over Ry. We have

hompg, (Q) R1 ® X, Y) = hompg, () Xk, Y).
k=1 k=1
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Proof. We remark that we have

Byo @ X = Q) B X
k=1 k=1

by Proposition of 425 (cf. Algebra). O

COROLLARY 2.2.3

®Z:1 Xk

Droy Xk @ Ry

Proof. We remark that we have

Rio@PXr=EPRioX;
k=1 k=1

by Proposition of 436 (cf. Algebra). Suppose that f is a multilinear mapping
of @, _, X into Y. We have

f@uel)=f(Pu). O
k=1 k=1

COROLLARY 2.2.4
Suppose that Y is a unital module over Ry. The mapping

hompg, () X, V) = homp, () X @ R1,Y @ Ry),
k=1 k=1

fe [@aee e [(Qan) ©1]
k=1 k=1
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is a homomorphism over Rs.

Qi1 Xk —_— Y

| l

R Xk ®R —— YR,

COROLLARY 2.2.5

n
k=1 Xk

_—

@Z:l Xk Y

Ry Xk @ Ry

///

Y®R;

@2:1 Xp ® Ry

ProrosITION 2.2.10
Suppose that f; is a homomorphism over R; of X; into Y; and let fs be a
homomorphism over Ry of X5 into Y5. A homomorphism over Ry

X:X1®X24)Y:Y1®Y§, Z’l—>f($):(f1®f2)<l‘)
is a homomorphism over R;.

Proof. We have

n

friz) = f(Z(thk) ® k)

k=1

[
M=

fi(viz) ® fa(xar)

=~
Il
MR

I
MS

(nfi(z1r)) ® fa(war)

ol
Il
-

vy Z f1(@1k) ® fa(rar)
=1

= v f(x)
for V(vi,2 =Y ), ®1k @ x2) of Ry x X. O

Suppose that V is a vector space over a field F and let E be an extension
field of F.
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ProrosiTION 2.2.11
We have the following.

1. The set V is a subspace over F of E® V' and we have

EV = (V).

2. A basis of V over F is a basis of E® V over E and we have
Proof. 1. The vector space V = F ® V is a subspace of E® V since F is a
subspace of E.

2. Suppose that A is a basis of V. We have

EQV =EQF®
— (E ® F)@A
— E®A
by Proposition of 436 (cf. Algebra). O

PRrROPOSITION 2.2.12
A Lie algebra over R; is a Lie algebra over Rs.

Suppose that X5 is a Lie algebra over Rs. We define the bilinear mapping

ni na ni na
[ E Uik, @ T1ky, E Vaky ® Tk, | = E E Vi, Vaky @ [T1ky, Tok,|  (2.3)
k1=1 ko=1 k1=1ko=1

for V(x1,22) = (X5 1 Vik, @ T 1k, D preq Voky ® T2k, ) of R @ X572 by Corollary
2.2.9

X$?
X$? X5
Ry ® X§?
=
Ry @ X$? R ® Xo

ProprosITION 2.2.13
The bilinear mapping (2.3)) satisfies the Jacobi identity.
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Proof. Suppose that

(1,22, 23) = E Uik, ® Tk, , E Voky, ® T1ky, E V3ky & T3k )

ki1=1 ko=1 k3=1

is an arbitrary element of R; ® X5°. We have

[xl’ [552,96‘3}] + [552, [3637961]] + [3637 xl,xz Z Z Z Viky V2ky V3ks

k1=1ko=1k3z=1

® <[‘T1k17 [z2k27x3k3]] + [I2k27 [mb’ksaxlklu + [3531637 [‘leukazH) =0. O

THEOREM 2.2.3
The unital module Ry ® X5 is a Lie algebra.

Proof. Suppose that z = >, _; v ® @, is an arbitrary element of Ry @ Xo. We

have .
= Z I/iVj X [l‘i,.’L‘j] =0. O
i,j=1
Suppose that X is a Lie algebra over R;.

ProOPOSITION 2.2.14
Suppose that R; ® X5 is a Lie algebra. We have the following.

1. The mapping
Xo — R ® Xo, r—1®z
is a homomorphism of Lie algebras.

2. We have hompg, (R; ® X2, X1) = homg, (X2, X7).

XQ —>X1

7

R ® Xo

Proof. The set hompg, (R1 ® X2, X1) is contained in hompg, (X2, X;) since the
mapping (2.4) is a homomorphism of Lie algebras. Suppose that f is an element

of hompg, (X2, X1). We have

ni

HEEEDY Z Viky Voo [ ([T18, > T2k, )

k1=1ky=1

=SS i v [F@i), £ (5]

k1=1ky=1

E Vik, ® T1ky )s g Vok, & ﬂ32k2

kll k21

= [f(x1), f(z2)]
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for V(z1,22) = (340! Z1 Vik, @ T1ky, Y opoey Vaky @ Tok,) of Ry @ X572, N

PROPOSITION 2.2.15
An algebra over a commutative ring with identity is a Lie algebra.

PROPOSITION 2.2.16
An algebra over R; is an algebra over Rj.

Proof. By Proposition [2.2.6 O

Suppose that X; is an algebra over R; and let X5 be an algebra over Rs.

ProrosiTIiON 2.2.17
The tensor product X; ® X5 is a compatible algebra over R;.

COROLLARY 2.2.6
The module R; ® X5 is a Lie algebra.

Proof. We have

1

na
[x1, 22] = Z Z VikyVoky © [T1k,, Tok, |
k?1:1 k}2:1

ni

n2
5 E Viky Voky @ (1k, Toky — T2ko T1ky )
k71:1 k}2:1

= X1T2 — T2
n n B2
for V(l‘l, 3?2) = (Zk)llzl Uik, ® xlkl’Zk;:l Yok, ® x2k2) of R1 ® X2 . O

PRroOPOSITION 2.2.18
The mapping

XQ—)R1®X2, r—1®x (25)
is a homomorphism of algebras.

THEOREM 2.2.4
We have hOIIlR1 (Rl & XQ,Xl) = hOHlR2 (XQ, Xl)

Xo—— X4

e

R ® X,

Proof. The set hompg, (R1 ® X2, X7) is contained in hompg, (X2, X7) since the
mapping (2.5)) is a homomorphism of algebras. Suppose that f is an element of
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homp, (X2, X1). We have
ny no

Flerwe) = Y Y vk, var, [ (15, T2k, )
ki1=1ko=1

ni

=3 v e f (@) f(@21,)

k1=1ko=1

= f(z Vikq ®1'1k1)f(z Voks ®z2k2)

k1=1 ko=1
= f(z1)f(22)
for V(w1,m2) = (31! _q Viky @ 1k, Y opoeq Voky ® Tok,) of Ry @ X572, O

PROPOSITION 2.2.19
The algebra hom V' is a subalgebra of hom(E ® V).

VvV — Vv

! !

EV — E®V
Proof. An element of hom V' extends uniquely to an element of hom(E @ V)
since hom(E ® V') = hom(V,E ® V') by Theorem O
COROLLARY 2.2.7
The algebra M (n,F) is a subalgebra of M (n,E) for Vn.

F* — F»

Lo

IETL 5 En
There exists a unique homomorphism of E ® hom V' into hom(E ® V') ex-
tending the identity mapping on hom V since

hom(]E ® hom V, hom(E ® V)) = hom(hom V,hom(E & V))
by Theorem

THEOREM 2.2.5
We have E ® hom V' = hom(E ® V') provided that V is finite dimensional.

Proof. The set of matrix units is a basis of
hom(E® V) = M(n,E)

by Corollary [2.277]
F~ Cij s Fn

I

E" Cij E"
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COROLLARY 2.2.8
The following diagram commutes provided that V is finite dimensional.

homV —% L F

l |

hom(E® V) —=— E
Suppose that L is a Lie algebra over F.

PROPOSITION 2.2.20
The set hom(L,hom V) is contained in the set hom(E ® L, hom(E ® V)).

L — hom V'

l !

E®L —— hom(E®V)

PRrROPOSITION 2.2.21
The following diagram commutes.

L — . homL

! l

E®L —% hom(E® L)

PROPOSITION 2.2.22
The following diagram commutes provided that L is finite dimensional.

L@Q LF
EoL®? — 2 g

PROPOSITION 2.2.23

Suppose that L; and Lo are ideals of L. The subspace span[L;, Lo] is an ideal
of L.

Proof. We have
I:xﬂ [1.17:1’.2]} = l:[xvxl]vxZ] + I:x17 [xva]]
and [m, [xl,xg]] belongs to span[Ly, Lo] for V(z,z1,22) of L x Ly X La. O

DEFINITION 2.2.3
Suppose that S is a subset of L. We define a subspace C'S = span[L, S].

DEFINITION 2.2.4
The ideal DL = span[L, L] is called the derived Lie algebra.
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PROPOSITION 2.2.24
Suppose that S; and S are subsets of L. We have
span[S7, Sa] = [span S, span Sa).

ProPOSITION 2.2.25
We have

(C"L) = (span L,span[L, L], span [L, [L, L]] . )
Proof. The proof is by induction on n. Suppose that n > 0. We define
(Sw)io = (Lo (L, L) (L (L, L)) )
We have
C"L = span[L,C" L]
= span [L, span Sn,l]

= span [L, Snfl]
= span .S,. O

COROLLARY 2.2.9
A Lie algebra L is nilpotent if and only if C™L = {0} for some n.

PROPOSITION 2.2.26
‘We have

(D"L)yy = (Span L,span|L, L],span|[[L, L], [L, L]|, .. )
Proof. The proof is by induction on n. Suppose that n > 0. We define

(S0)2, = (L, L, L], [[L, L], [L,L]],...).
We have
D"L = span[D" 'L, D" ' L]
= span[span Sy, _1,span Sy, 1]

= Spal [Sn—la Sn—l]
= spanS,. O

COROLLARY 2.2.10
A Lie algebra L is solvable if and only if D™L = {0} for some n.

ProroOSITION 2.2.27
The sets C™L and D" L are ideals of L for Vn.

Proof. By Proposition [2.2.23 O
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PROPOSITION 2.2.28
We have C"(E® L) = E ® C"L for Vn.

Proof. The proof is by induction on n. Suppose that n > 0. We have

C"(E® L) = span[E® L, C"HE® L)]
=span[E® L,E® C" "' L]
= span[L,C"‘lL}
=spanC"L
=E®C"L

by the induction hypothesis. O

COROLLARY 2.2.11
The Lie algebra E ® L is nilpotent if and only if the Lie algebra L is nilpotent.

ProPOSITION 2.2.29
We have D(E® L) = E® DL for Vn.

Proof. We have

DE® L) =span[E® L,E® L]
= span[L, L]
=span DL
=E®DL. O

COROLLARY 2.2.12
The Lie algebra E ® L is solvable if and only if the Lie algebra L is solvable.

THEOREM 2.2.6 (Engel)
A finite dimensional Lie algebra over a field of characteristic 0 is solvable if and
only if the derived Lie algebra is nilpotent.

Proof. We may assume that the underlying field F is algebraically closed. Sup-

pose that L is solvable. We may assume that ad L is a Lie subalgebra of the
subalgebra

{zeMn,F):z;=0forVi>Vj}
by Lie’s theorem. The Lie subalgebra ad DL is contained in the subalgebra
{zeMn,F):z;=0for Vi > Vj }.

The Lie algebra DL is nilpotent by Corollary O
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2.3 Jordan Decomposition of a Linear Mapping

Suppose that V is a finite dimensional vector space over a field F and let Z
be an element of hom V. We write F[z] for the algebra of polynomials in one
indeterminate z over F.

ProrosiTION 2.3.1
The mapping f(z) — f(Z) is a homomorphism of algebras of F[z] into hom V.

DEFINITION 2.3.1
The unique monic polynomial generating the ideal

{f(z) €Fz]: f(z) =0} # {0}
is called the minimal polynomial of Z.

We write F for the algebraic closure of F and the minimal polynomial of Z

by
folz) = [J (@ =)™,
VEF
PROPOSITION 2.3.2
We have

715‘[96] = z): J(x x
i ~ (@ @) €Flal}.

ProrosITION 2.3.3
An element T of hom V' is diagonalisable if and only if

V= @ker(i —v).
veF

Proof. Suppose that z is diagonalisable and let
{vetioy ={v eF :ker(z —v) # {0} }
such that #{v}}_, = n. We have

V= @ker(i — V)
k=1
= @ker(i —v).

veF

Suppose that

V= @ker(i —v)

veR
and let
{uyp_, ={v eF ker(z —v) # {0} }
such that #{v;}}_, = n. We have

V= ker(@ - ). O
k=1
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DEFINITION 2.3.2
=S+ N
is called a Jordan decomposition if it satisfies the following.
1. An element S of hom V' is diagonalisable.
2. An element N of hom V is nilpotent.
3. We have [S, N] = 0.

ProrosiTION 2.3.4
Suppose that IV is a nilpotent element of hom V. We have

o0
(1-N)"'=> N"
n=0
Proof. We define m = min{m : N™ = 0}. We have

(1—N)§:N"=(1—N)ZN”
n=0

n<m

=1-N"=1 ]

THEOREM 2.3.1
Suppose that £ =S + N is a Jordan decomposition. We have the following.

1. The set {v € F: fo(r) =0} is contained in F.
2. We have m(v) = min{ m : N™ker(S — v) = {0} } for Vv of F.
3. We have ker(S — v) = ker(z — v)"™") for Vv of F.

4. We have
V= @ker(ﬁ: — l/)m(l’)

velR

and the element z has a unique Jordan decomposition z = S + N.

Proof. We have
V= EBker(S —v)

velR
by Proposition and let

{vetrey ={v eF :ker(S —v) # {0} }

such that #{v}}_, = n. The subspace ker(S — v4) is invariant for z for Vk
since  and S commute. We define

my = min{ m : N" ker(S — vy,) = {0} }
= min{ m: (T — )" ker(S — ;) = {0} } >1
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for Vk. The minimal polynomial of the restriction of Z to the invariant subspace
ker(S — 1) is (@ — vg)™* and thus (x — vg)™* divides fo(z) for Vk. We have

n
{6 w
k=1

since

n
H T —u)™ =0.

The subspace ker(S — vy) is contained in ker(Z — v)™* for Vk. Suppose that
1 <ky <n and let

U:ivk € éker(sfyk) =V
k=1 k=1

be an element of ker(z — vy, )"*0. We have

0= (Z — vg,) ™ ov

M:

(T — viy ) "o vy,
k=1

and

0= (.’f — yko)mkovk
— (l/k — Vg, T N)mkovk

for Vk since the subspace ker(S — vy) is invariant for (Z — v, )"* for Vk. We
have v, = 0 provided that k # ko since vy, — vk, + N is invertible by Proposition
We have ker(S — vy,) = ker(Z — vy)™* for Vk. Suppose that

v = ka € @ker(:f —y)"E=V.
k=1 k=1

We have Sv = >"}_, vvg. O

DEFINITION 2.3.3
Suppose that S is a subset of a commutative ring R. We have the following.

1. An element d of R is called a common divisor of S if S is a subset of Rd.

2. A common divisor d of S is called a greatest common divisor if d is a
multiple of any common divisor of S.

PROPOSITION 2.3.5
Any subset of a principal ideal domain has a greatest common divisor.
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Proof. Suppose that S is a subset of a principal ideal domain R. There exists
an element d of R such that (S) = Rd. The element d is a common divisor of S
contained in (5). O

PROPOSITION 2.3.6
Suppose that S is a subset of a principal ideal domain R.

{a greatest common divisor of S} = {d € R: Rd = (S5)}.

ProroOSITION 2.3.7
Suppose that R is a commutative ring with identity and let S be a subset of R.
Suppose that dy is a greatest common divisor of S.

{a greatest common divisor of S} = {d € R: Rd = Rdy }

PROPOSITION 2.3.8
Suppose that S is a subset of an integral domain R and let dy be a greatest
common divisor of S.

{a greatest common divisor of S} = R*dy.

DEFINITION 2.3.4
A subset S of an integral domain R is said to be relatively prime if

{a greatest common divisor of S } = R*.

PROPOSITION 2.3.9
A subset S of a principal ideal domain R is relatively prime if and only if

R=(9).

COROLLARY 2.3.1
A subset {z1,...,z,} of a principal ideal domain R is relatively prime if and
only if
R = Rx1+ -+ Ru,.
PROPOSITION 2.3.10
Suppose that S is a subset of F[z] such that S\ {0} is not empty. There exists

a unique monic greatest common divisor of S.

Proof. There exists a greatest common divisor d(z) of S by Proposition
We have d(z) # 0 since S\ {0} is not empty. We have

{a greatest common divisor of S} = (F \ {0})d(x)

by Proposition [2.3.8 O
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Suppose that the set
{ veF: f() =0 }
is contained in F and let {vy}}_, be a subset of IF containing the set
{ veF: fo =0 }

such that #{v;}7_; = n.
There exists a set {my}}_, of positive integers such that fo(x) divides

n
DI

ProprosITION 2.3.11

There exists an element (f1(z), ..., fn(x))::1 of
f(x) f(z)
Flz @) X+ x Fla] @)

such that 1 =3"7_, fu(Z).
Proof. We may assume that n > 1. The set

{<x f(i)w e ! Ei))mn }

is relatively prime. There exists an element (fi(z),..., fn(x))z:l of
Fla]—1®) o — @)
(x —vp)m™ (x — vp)™mn
such that 1 =3"}_, fi(z) by Corollary O

PROPOSITION 2.3.12
Suppose that M is a left module over a ring and let A be a set. Suppose that
(P;)ien is an element of (hom M)* satisfying the following.

1. The element (P;(z)),_, belongs to @,;c, M and we have
x = Z Pi(x)
icA

for V.

2. We have P; o P; = 0 provided that ¢ # j.
We have the following.
1. We have P; o P; = 6;;P; and
P, (M { xr€M:P(x)=cz }
for Vi and Vj.
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2. We have
M = EB Pi(M).

€A
Proof. 1. Suppose that z is an element of M. We have P;(x) = P?(x) since

x = P(z)+ Z Pj(x).

JeEM{i}

2. Suppose that x is an element of M. The element €, , Pi(x) belongs to
D;cn Pi(M) and x = ), P;(z). Suppose that P, x; is an element of
D;ca Pi(M) such that x =), \ ; = 0. We have

€A
0= Pl(x)
= P;(;)
= ‘ri
for Vi. O

ProproSITION 2.3.13
We have

V= @ker(ﬁc — )"k
k=1

Proof. Suppose that i # j. The polynomial f;(r) ;) belongs to Flx] f(x) since
(fi(), f;(x)) belongs to

by Proposition [2.3.12] The subspace f(Z)V is contained in ker(Z — vy)™* for
Vk since (T — vg)™* fr,(Z) = 0. Suppose that 1 < kg < n and let v be an element
of ker(Z — vy, )"™*o. We have

v=fr@v+ Y ful@v

kko

= fko (f)v

since fi(x) belongs to F[z](x — v, )™*o provided that k # k. O
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ProrosiTION 2.3.14
We have the following.

1. We have
V= @ker(i —y)m)
veF
= @ n}gnoo ker(z — v)™.
velF

2. We write P, for the projection of V' onto lim,, ., ker(Z — )™ for Vv. We
have f(z) = P,, for Vk.

3. Suppose that v is an element of F and let v be an element of F \ {vg}.
The projection P, belongs to

lim { f(z) : f(z) € Flz](z — vo)" }.

n—oo

THEOREM 2.3.2
The set {v € F : fo(v) = 0} is contained in F if and only if Z is Jordan
decomposable.

Proof. We define

and

= > (T — ) fe(T).

k=1
The element S is diagonalisable and we have [S,N] = 0. We write m =
sup{ms}}_,. We have

n

N™ = Z(z — )™ ()

k=1
= 0. O

COROLLARY 2.3.2
We have the following.
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1. The element S belongs to

lim { f(z): f(z) € Flz]a" }.

n—oo

2. The element N belongs to { f(z) : f(z) € Flz]z }.
COROLLARY 2.3.3
An element Z of hom V' is diagonalisable if and only if Z is Jordan decomposable
and the minimal polynomial of Z does not have a multiple root.
Proof. We write 1,, for the identity of M (m,F) for Vm. Suppose that

T = diag(l/l]-mlv .- '»Vn]-mn)v

where {vy}7_, is a subset of F such that #{v}}_, = n and {my}}_, is a subset
of N. The minimal polynomial of Z is

(x—v1) (T — ).
Suppose that the minimal polynomial of Z is
(x—v1) (T —vy),

where {vy}7_, is a subset of F such that #{v}}_, = n. We have
V= @ker(:f — )
k=1

by Proposition O

COROLLARY 2.3.4
A restriction of a diagonalisable element of hom V' to an invariant subspace is
diagonalisable.

Proof. Suppose that Z is a diagonalisable element of hom V' and let V|, be an
invariant subspace. The minimal polynomial of the restriction of the element
Z to the invariant subspace V| divides the minimal polynomial of the element
z. O

THEOREM 2.3.3
A subset S of the set

{ a diagonalisable element of hom V}

is simultaneously diagonalisable if and only if [Z1, Zo] = 0 for V(#1,Z2) of S2.
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Proof. Suppose that [Z1,Zs] = 0 for ¥(Z1, Z2) of S2. The proof is by induction
on n = dimspan S. Suppose that n > 0 and let {Z1,...,Z,} be a basis of span S
contained in S. We have

V= @ ker(zy —v1) N---Nker(Tp—1 — vp—1)
(V14eesp—1)EFR—1
since {Z1,...,Zn—1} is simultaneously diagonalisable by the induction hypoth-
esis. Suppose that v = (v1,...,v,_1) is an element of F*~!. The subspace

V, =ker(z; —vi)N---Nker(Zp—1 — vp—1)

is invariant for z,, since [Z1,Z,] = -+ = [Zn—1,Zs] = 0. The restriction of z,, to
V, is diagonalisable by Corollary The set {Z1,...,Z,} is simultaneously
diagonalisable. The set span .S is simultaneously diagonalisable. O

THEOREM 2.3.4

A mapping f of a finite subset S of F into F extends uniquely to an element
f(x) of F[z] such that deg f(z) < #S5 = n. We have

Tr — UV T — Vp

f(@) = f(n) ot fvn)

b
vy — 12 Vi —VUn Vn — V1 Vpn — Vn-1

Tr—1 T —Vp_1

where S = {v;}7_;.

Proof. The proof of uniqueness is by induction on n. Suppose that n > 0.
Suppose that f extends to an element

f(z) = fi(z)(z —v1) + f(11)

such that deg fi(x) <n — 1. We have

fl(w):f(yz)_f(yl> T—v3 Ty

Vo — 1 Vo — U3 Vo — Vp
A e A GV e I el
Un — 11 Un — V2 Un —Vn-1
by the induction hypothesis. O

COROLLARY 2.3.5

Suppose that Z is a diagonalisable element of hom V. We have

det(z—v)=0

2.4 Cartan’s Criteria

Suppose that V is a finite dimensional vector space over a field F.
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ProprosITION 2.4.1
ad z is diagonalisable if x is a diagonalisable element of hom V.

Proof. There exists a basis {ex}}_; such that
x(er,...,en) = (e1,...,e,)diag(vy, ..., vy,).
We have .
(adx)(es) = [Z Vkekk, €ij] = (Vi —vj)eij. O
k=1

COROLLARY 2.4.1
Suppose that =S + N is a Jordan decomposition of an element of hom V.

adr =adS +adN

is a Jordan decomposition.

Proof. The element ad N is nilpotent by Proposition [2.1.8] and we have
[ad S,ad N] = ad[S,N] =0. O
Suppose that p is a representation of a Lie algebra on a vector space.

DEFINITION 2.4.1
A bilinear form f is said to be invariant for p if

f(p(z)v,w) + f(v, pz)w) =0
for V(x,v,w).

PROPOSITION 2.4.2
Suppose that p is finite dimensional. A symmetric form

By (x,y) = tr(p(x)p(y))

is invariant for the adjoint representation.

Proof. We have

B,((ad2)(z),y) = tr([p(z), P(@]P(y))
= (@) =), )
= —Bp(x, (ad Z)(y)) -

COROLLARY 2.4.2
The Killing form on a finite dimensional Lie algebra is invariant for the adjoint
representation.
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PROPOSITION 2.4.3
Suppose that B is an invariant bilinear form on a Lie algebra L and let Ly be
an ideal of L. The subspace { # € L : B(z, Lg) = {0} } is an ideal of L.

Proof. Suppose that B(zg, Lo) = {0}. We have

B([m,w(ﬂ,xo) = —B(acé7 [x,mo]) =0
for V(z,zg) of L x L. O

PROPOSITION 2.4.4
Suppose that F is an algebraically closed field of characteristic 0. We define

L£={zechomV :(adZ)A is a subset of B }
={ZchomV : f(adZ)A is a subset of B for Vf(z) of F[z]z },

where A is a subspace of hom V' and B is a subspace of A. An element of
={zeLl:tr(zL) ={0}}
is nilpotent and the Lie algebra £ is nilpotent.

Proof. Suppose that Z is an element of £+ and let Z = S + N be the Jordan
decomposition. The element S belongs to £ since there exists an element f(x)
of F[z]x such that ad S = f(ad Z). There exists a basis {ex}}7_, such that

S(er,...,en) = (e1,...,en)diag(vy,...,vp).

Suppose that f is an arbitrary linear functional on (vy,...,v,)p. The element
f(S) belongs to L since
(adf( ) (eij) = ( (vi) = VJ))eij
= f(vi —vj)ei;
= f(ad S)(es).
We have

S fo)? = £(1x(85(5)))

k=1
= F(tr(2(9) ~ (N F($))) =0
since N f(S) is nilpotent. O

THEOREM 2.4.1 (Chevalley)
Suppose that F is a field of characteristic 0. A Lie subalgebra L of homV is
solvable if
tr(L - DL) = {0}.
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Proof. We may assume that F is algebraically closed. It is sufficient to show
that the derived Lie algebra is nilpotent. The Lie algebra L is a Lie subalgebra
of the Lie algebra

L={zchomV :(adz)L is a subset of DL }.
We have
tr(L£ - DL) = {0}.
The derived Lie algebra is a Lie subalgebra of the nilpotent Lie algebra £+. O

THEOREM 2.4.2
A finite dimensional Lie algebra L over a field of characteristic 0 is solvable if
and only if
tr((ad L)(ad DL)) = {0}.

Proof. We may assume that the underlying field is algebraically closed.
Suppose that L is solvable. We may assume that ad L is a Lie subalgebra of
the subalgebra
{zeMn,F):z; =0for Vi>Vj}

by Lie’s theorem. The Lie subalgebra ad DL is contained in the subalgebra
{zeMn,F):z;=0for Vi >Vj}.
Suppose that
tr((ad L)(ad DL)) = {0}.

The Lie algebra L is solvable since the Lie subalgebra ad L is solvable by Cheval-
ley’s theorem. O

COROLLARY 2.4.3 (Cartan)
A finite dimensional Lie algebra over a field of characteristic 0 is solvable if the
Killing form is trivial.

PRroPOSITION 2.4.5
A finite dimensional Lie algebra has a maximal solvable ideal.

Proof. There exists a solvable ideal Ly such that
dim Ly = max{ dim Lg : Ly is a solvable ideal}
since the ideal {0} is solvable. O

THEOREM 2.4.3
Suppose that Lo is an ideal of a Lie algebra L and let L; be a Lie subalgebra

of L. We have
Ly Lo+ Iy

LoNnL, Lo
Proof. The subspace Ly + L; is a Lie subalgebra. O
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PROPOSITION 2.4.6
Suppose that Ly is an ideal of a Lie algebra L. The Lie algebra L is solvable if
and only if the ideal Ly and the quotient Lie algebra L/Lg are solvable.

Proof. Suppose that D™ Lo = {0} and D"(L/Ly) = {0}. We have D"*"[, =
{0} since the ideal D™ L is contained in the ideal Lg. O

THEOREM 2.4.4
The set of solvable ideals of a Lie algebra is a directed set.

Proof. The set of solvable ideals is not empty since the ideal {0} is solvable.
Suppose that L; and Lo are solvable ideals. The ideal Ly + Lo is solvable since
the ideal L, and the quotient Lie algebra

Li+Lys  La
Ly  LiNnLs

are solvable. O

ProOPOSITION 2.4.7
A maximal element of a directed set is the maximum element.

COROLLARY 2.4.4
A maximal solvable ideal of a Lie algebra is the maximum solvable ideal.

DEFINITION 2.4.2
The maximum solvable ideal of a Lie algebra is called the radical of the Lie
algebra. The radical of a Lie algebra L is denoted by rad L.

COROLLARY 2.4.5
A finite dimensional Lie algebra has the radical.

DEFINITION 2.4.3
A Lie algebra is said to be semisimple if the ideal {0} is the only solvable ideal.

THEOREM 2.4.5
A Lie algebra is semisimple if and only if the ideal {0} is the only commutative
ideal.

Proof. Suppose that the ideal {0} is the only commutative ideal and let L be
an arbitrary solvable ideal. Suppose that n = min{n : D"L = {0} } > 0. The
ideal D"~ 'L is commutative. This is a contradiction. O

PROPOSITION 2.4.8
Suppose that Ly is an ideal of a finite dimensional Lie algebra L. We have

_fadr,x *
mx_<0 m@+m0

for Vz.
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PROPOSITION 2.4.9
Any commutative ideal of a finite dimensional Lie algebra L is contained in the
ideal L*.

Proof. Suppose that Lg is a commutative ideal of the Lie algebra L and let ¢
be an element of the ideal Ly. We have

_(adr, zo * A
adzo = < 0 ad(x0+L0)) - <o 0>' =
THEOREM 2.4.6

A finite dimensional Lie algebra is semisimple if the Killing form is nondegen-
erate.

Proof. We have L+ = {0} since the Killing form is nondegenerate. O

THEOREM 2.4.7 (Cartan)
The following are equivalent for a finite dimensional Lie algebra over a field of
characteristic 0.

1. The Lie algebra is semisimple.
2. The Killing form is nondegenerate.

3. We have
LonLy ={z € Lo: B(z,Ly) = {0} } = {0}

for an arbitrary ideal Lg.

Proof. Suppose that the Lie algebra is semisimple and let Ly be an arbitrary
ideal. The Killing form on the ideal Ly N Lg is trivial. The ideal Lo N Lg is
solvable by Cartan’s criterion for solvability. O

COROLLARY 2.4.6
Any ideal of a finite dimensional semisimple Lie algebra over a field of charac-
teristic 0 is semisimple.

Proof. Suppose that Lg is an arbitrary ideal of a finite dimensional semisimple
Lie algebra over a field of characteristic 0. The Killing form on the ideal Lg is
nondegenerate since we have Lo N Lg = {0}. The ideal L, is semisimple. O

2.5 Cohomology

THEOREM 2.5.1
We have

hom(/\ M,N) = {an alternating mapping of M" into N}

for unital modules M and N over a commutative ring with identity.
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PRrROPOSITION 2.5.1
We have
H hom(M;,N) = hom(@ M;,N)
‘ i
for unital modules M; and N over a commutative ring with identity.

Suppose that p is a representation of a Lie algebra L on a vector space V
and let f be an element of hom(A" L, V). We define

n+1

Of(x1,...,&Zpng41) = — Z(fl)kp(xk)f(xl,...,wk_l,wk_H, ey Tnt1)
k=1
+Z Z+]f( x?mxj]7x1,"'axi—hxi-‘rh"'7x‘j—17xj+la~--;xn-‘rl)-
i<J
We write
xk:xl/\-~-/\xk,1/\xk+1/\~-~/\xn
for Vk and

2 = [SL‘Z‘,SL‘J‘} NI N ANT g NTipr N - ANZj 1 ANTjp1 A Ny
for Vi < Vj.

PROPOSITION 2.5.2
We have

hom(/\ L,V) = [ ] hom(/\ L, V).
n=0

PROPOSITION 2.5.3
The element 0 belongs to homhom(A L, V).

hom(A° L, V) —2— hom(A'L,V) —2— hom(A\?L,V) —2— ...
Proof. Suppose that i < j and let ; = x; = x. We have
Of (w1, .. 2ng1) = C1 + Co,

where
Cr = —p(@) (1) f(a") + (=17 £ (7)) =0

and

Cy = Z((_l)k-i—if(xki) n (_l)k-i-jf(xkj))
k<i
n Z ( H—kf zk)+(_1)k+jf(xkj))

i<k<j
+Z( 1+kf zk) +(—1)j+kf($jk)> =0. O

i<k
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We define
e(l‘)f(.l‘l, cee 7xn) = p(z)f(xl, s 733n)
- Zf(ﬂﬁhn-,xk—h [ﬂf,xk]7$k+1,---,$n>-
k=1

PROPOSITION 2.5.4
The element 6(x) belongs to hom hom(A L, V) for Vx.

Proof. Suppose that i < j and let x; = ;. We have

0(x)f(x1,...,xn) = —f(xl, ey T, [x,xi],xiﬂ, . ,a:n>
7f(l‘1,...,$j_1,[l‘,xj],ﬂjj+1,...,llin):O. O
Suppose that f is an element of hom(/\"+1 L, V). We define

vx)f(x1,...,xn) = flz,21,...,20).

PROPOSITION 2.5.5
The element ¢(x) belongs to hom hom(A L, V).

0 < hom(A° L, V) L hom(A'L, V) 4 ...

PRrROPOSITION 2.5.6
We have 6(z) = {«(x),0} for Vz.

Proof. We have
W(2)0f (1, xpn) =0f (X, 21,...,2p)

=0(2)f(x1,- - wn) + D (~DFp(e) f(z A ak) =3 (1) f(z A ')
and
(@) f(@r, . oyn) = = 3 (=1 plan)f (@ Aah) + 3 (=)™ f (2 A a¥),

We have 0(z) f(z1,...,zn) = {t(2),0} f(z1,..., 7). O

PROPOSITION 2.5.7
We have ¢([z1, z2]) = [0(x1), t(z2)] for V(z1,22).

Proof. We have

n+2

0(1)u(ws) (23, - Tny2) = pla1) (T2, Tns2) = D (1) f (™)

k=3
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and

We have

[0(21), v(z2)] fl2s, .. -, Tpao) = f(xu) = i([z1,22]) f (3, . . ., ZTpao). O

PROPOSITION 2.5.8
The element 6 is a representation of the Lie algebra L on the vector space

hom(A L, V).
Proof. 1t is sufficient to show that
0([.1317 $2])f = [9(.’131), 0(1‘2)] f

for Vf of hom(A" L, V). The proof is by induction on n.
Suppose that f is an element of hom(A° L, V). We have

0([x1,22]) f = p([x1, 22]) f
= [p(z1), p(x2)] f
= [9(1‘1),9(x2)}f

Suppose that n > 0 and let f be an element of hom(A" L, V). We have
Uz3)0([x1, 32)) = 0([z1, 22])e(23) — L(Hiﬁl,:r,Q],LEg])
and
Uw3)0([z1, 2]) f = 0([z1, 2])e(xs) f — L([[ml,xg],xg])f
= [9(:61), 9(1‘2)}[,({,63)}8 — L([[.Tl,xg],l'g})f

by the induction hypothesis. We have

0(@0)0(w2)ulws) = 0(w1) (1([w2, w3]) + e(w3)0(x2) )
= L([!L‘l, [x27333]]> + ([z2, x3])0(z1) + (L([(,Ul,.’L'?,]) + L(x3)9(1'1))9({£2)
_ L([zl, [xz,xg]}) + 1 ([w2, 23))0(21) + ¢ ([0, 75))0(x2) + 1(3)0(1)0(a2)
and

[0(e1), 0w2)]e(ws) = o[, [w2, 3] = [w2, [21, 23] ) + olws) [0(21), 6(2)].
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We have

Uw3)0([z1, 22]) f = L([J?l, (w2, x3]] — [22, [x1, 23] — [[xl,xQ],ngf
+ 1(x3) [0(21), 0(x2) | f = v(xs)[0(x1), 0(x2)] f

and
O([x1, x2]) f = [0(21),0(22)] f

since the element x3 is arbitrary. O

PROPOSITION 2.5.9
The element 6(x) commutes with the element 0 for Vz.

Proof. 1t is sufficient to show that

[0,6(z)]f=0

for Vf of hom(A"™ L, V). The proof is by induction on n. Suppose that f is an
element of hom(A® L, V). We have

[0,0(2)] f(21) = p(a1)p(2) f = p(x)p(x1) f + p([z, 21]) f = 0.
Suppose that n > 0 and let f be an element of hom(A" L, V). We have

Uz1)00(z) = (0(z1) — Ou(z1))6()

= 0(0)0(x) — (@)1 — o[z, 2] )
= 6(x1)0(x) — 00(x)e(z1) + 5‘L([a:,x1])
and
W@0)0(@)0 = (0()e(er) = o((w, 21)) )0
= 0(x)(0(z1) — (1)) — ¢([2,21])0
= 0(2)0(x1) — 0(x)du(x1) + Oc([z, 21]) — 0([z, 21])
= 0(21)0(z) — 0(2)0(x1) + Ou([z,21]).

We have (1) [0,0(x)] = —[9,0(x)]¢(z1) and

W(z1)[0,0(x)] f = —[9,0(x)]u(z1)f =0
by the induction hypothesis. We have
[0,6(z)]f=0
since the element x; is arbitrary. O

THEOREM 2.5.2
We have 02 = 0.
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Proof. Tt is sufficient to show that 92 f = 0 for Vf of hom(A" L, V). The proof
is by induction on n. Suppose that f is an element of hom( /\0 L,V). We have

O f(z1,22) = p(x1)0f (2) — p(x2)0f (x1) — Of ([21, 22])
p(x1)p(a2)f = plza)p(z1) f = p([21, 22]) f = 0.

Suppose that n > 0 and let f be an element of hom(A" L, V). We have

W(2)0? = (0(z) — u(x))0
=0(2)0 — 0(0(z) — Ou(x))
= 0%u(x)

and 1(x)9%f = 8%1(x) f = 0 by the induction hypothesis. We have 9% f = 0 since
the element z is arbitrary. O

2.6 Weyl’s Theorem

DEFINITION 2.6.1
A representation of a Lia algebra on a vector space V' # {0} is said to be
irreducible if the subspaces V and {0} are the only invariant subspaces.

DEFINITION 2.6.2
A Lie algebra is said to be simple if the adjoint representation is irreducible.

PROPOSITION 2.6.1
A simple Lie algebra is either a semisimple Lie algebra or a commutative Lie
algebra of dimension one.

Proof. A simple Lie algebra of dimension greater than one is not commutative.
O

PROPOSITION 2.6.2
The derived Lie algebra of a semisimple simple Lie algebra is itself.

PROPOSITION 2.6.3
Suppose that L is a finite dimensional semisimple Lie algebra over a field of
characteristic 0 and let Lo be an ideal of L. We have L = Lo @ Lg .

Proof. Suppose that {ek. }Zi:mlL is a basis of the Lie algebra L such that {ek }:i:mlLo

is a basis of the ideal Ly. There exists a basis {fk}:i:mlL such that

(Be £7)) ey =1

dim L

The set {fk k=dim Lo+1

is a basis of the ideal Lg. We have L = Lo & Ly since

[Lo,Ly] = LoN Ly ={0}. O
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THEOREM 2.6.1
A finite dimensional semisimple Lie algebra over a field of characteristic 0 is a
direct sum of semisimple simple Lie algebras.

Proof. The proof is by induction on the dimension of the Lie algebra L. Suppose
that dim L > 0. We may assume that the Lie algebra L is not simple. There
exists an ideal Ly of the Lie algebra L such that 0 < dim Ly < dim L. The
semisimple ideals Ly and Lg are direct sums of simple Lie algebras by the
induction hypothesis. O

COROLLARY 2.6.1
The derived Lie algebra of a finite dimensional semisimple Lie algebra over a
field of characteristic 0 is itself.

THEOREM 2.6.2
Suppose that L = @, L; is a direct sum of semisimple simple Lie algebras over
a field. We have
{Li : z} = {a simple ideal of L}

and
{a partial direct sum of @, L;} = {an ideal of L}.

Proof. By Remark of 491 (cf. Lie Algebras). O

COROLLARY 2.6.2
A direct sum of semisimple simple Lie algebras over a field is semisimple.

COROLLARY 2.6.3
A direct sum of finite dimensional semisimple Lie algebras over a field of char-
acteristic 0 is semisimple.

DEFINITION 2.6.3
A finite dimensional representation of a Lie algebra is said to be completely
reducible if the space is an internal direct sum of irreducible invariant subspaces.

PRrROPOSITION 2.6.4
A representation of a Lie algebra on a finite dimensional vector space V # {0}
is associated with an irreducible invariant subspace.

Proof. There exists an invariant subspace V; # {0} such that
dim V, = min{ dim Vy : Vy # {0} is an invariant subspace}
and the invariant subspace Vj is irreducible. O

PRroPOSITION 2.6.5
The following are equivalent for a representation of a Lie algebra on a finite
dimensional vector space V.

1. The representation is completely reducible.
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2. Suppose that Vj is an invariant subspace. There exists an invariant sub-
space Vg- such that V =V, @ Vg'.

Proof. Suppose that the representation is completely reducible and let V =
@) _, Vi be an internal direct sum of irreducible invariant subspaces. The proof
is by induction on codimVy = dimV — dim V. Suppose that codim V > 0.
There exists k such that the irreducible invariant subspace Vj is not contained
in the invariant subspace V. We have

Vo nVi = {0}
since the subspace Vo N Vy # Vi is invariant. We have
codim(Vp @ Vi) < codim Vj.
There exists an invariant subspace (Vo @ Vi)* such that

V=VeaVe(Voe Wt
=Vo® (Vk ® (W @Vk)L)

by the induction hypothesis.

Suppose that the condition [2| holds and let Vy = @Z:l Vi, be an arbitrary
internal direct sum of irreducible invariant subspaces. There exists an invariant
subspace Vi- such that V = Vi @ Vg-. There exists an irreducible invariant

subspace V11 of V5 provided that Vy # V by Proposition m The space

Z;Ll Vi # Vp is an internal direct sum of irreducible invariant subspaces. [

DEFINITION 2.6.4

A finite dimensional Lie algebra is said to be reductive if the adjoint represen-
tation is completely reducible.

PROPOSITION 2.6.6

An ideal of an ideal of a reductive Lie algebra is an ideal of the Lie algebra.

Proof. Suppose that Ly is an ideal of a reductive Lie algebra L and let L be
an ideal of the ideal Lg. There exists an ideal Lg of L such that L = Lo & Lg .
The set [L, L1] = [Lo ® Ly, L1] = [Lo, L1] is contained in the set L. O

PROPOSITION 2.6.7

A finite dimensional semisimple Lie algebra over a field of characteristic 0 is
reductive.

Proof. By Proposition [2.6.3 O

PROPOSITION 2.6.8

We have
{a simple ideal of L} = {an irreducible invariant subspace for ad L}

for a reductive Lie algebra L.
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Proof. A simple ideal of the Lie algebra L is an irreducible invariant subspace
for the adjoint representation of the Lie algebra L.

Suppose that Ly is an irreducible invariant subspace for the adjoint repre-
sentation of the Lie algebra L. The ideal Ly is simple since an ideal of the ideal
Ly is an invariant subspace for the adjoint representation of the Lie algebra L
by Proposition O

THEOREM 2.6.3
We have the following for a reductive Lie algebra L.

1. The reductive Lie algebra is an internal direct sum of the derived Lie
algebra and the radical.

2. The derived Lie algebra is semisimple.
3. The radical is commutative.

Proof. We may assume that
L=5®A4, S =L,
k=1

where the ideal Ly is semisimple and simple for Vk and the ideal A is commu-
tative by Proposition and Proposition The ideal S is semisimple by
Corollary We have S = DS = DL by Proposition There exists the
radical of the Lie algebra L by Corollary [2.4.5l We have DL Nrad L = {0} since
it is a solvable ideal of the semisimple ideal DL. We have A = rad L. O

DEFINITION 2.6.5
The kernel of the adjoint representation of a Lie algebra is a commutative ideal
and it is called the center.

REMARK 2.6.1
The adjoint representation of a semisimple Lie algebra is faithful.

THEOREM 2.6.4
A finite dimensional Lie algebra over a field of characteristic 0 is reductive if
and only if it is a direct sum of a semisimple Lie algebra and a commutative Lie
algebra.

Proof. Suppose that the Lie algebra L = S @ A is a direct sum of a semisimple
Lie algebra S and a commutative Lie algebra A. We have S = DS = DL by
Corollary We have DL Nrad L = {0} since it is a solvable ideal of the
semisimple ideal DL. We have A = rad L. The Lie algebra is reductive since it
is a direct sum of simple Lie algebras by Theorem [2.6.1] O

COROLLARY 2.6.4
Suppose that L is a reductive Lie algebra over a field of characteristic 0.

L=DL®radL
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is the unique decomposition of the Lie algabra into an internal direct sum of a
semisimple ideal and a commutative ideal.

ProrosITION 2.6.9
Suppose that L is a reductive Lie algebra over a field of characteristic 0. We

have
rad L = L.

Proof. The radical is contained in the ideal L*. Suppose that z is an element
of the ideal L and let x = (z — x9) @ o be the decomposition in the direct
sum L = DL @ rad L. We have = = xq since the Killing form of the derived Lie
algebra is nondegenerate and we have B(xz — x¢, DL) = B(x, DL) = {0}. O

EXAMPLE 2.6.1
Suppose that F is a field of characteristic 0. The Lie algebra

M(m,F)={zeM(mF):trz=0}&F
is reductive and we have
DM(m,F) ={xz € M(m,F):tre =0}, M(m,F)t =TF
for m > 1.

ProprosITION 2.6.10
Suppose that Ly is an ideal of a Lie algebra L and let = be the canonical
homomorphism of the Lie algebra L onto the quotient Lie algebra L/Lg. We
have

{an ideal of L containing Lo} = {an ideal Ly of L such that 7~ (m(L1)) = Ll}
= {an ideal of L/Ly}.
ProrosITION 2.6.11
Suppose that Lg is an ideal of a Lie algebra L and let m be the canonical

homomorphism of the Lie algebra L onto the quotient Lie algebra L/Ly. We

have
L/Ly = (L/Lo)/m(L1)

for an ideal L; of the Lie algebra L containing the ideal L.

ProprosITION 2.6.12
Suppose that L is a finite dimensional Lie algebra such that L+ N DL = {0}.

We have the following.
1. The ideal L+ is the largest commutative ideal of the Lie algebra L.
2. The quotient Lie algebra L/L* is semisimple.

Proof. 1. We have [L*,L*+] = LN DL = {0}.
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2. We write 7 for the canonical homomorphism of the Lie algebra L onto
the quotient Lie algebra L/L* and let Ly be an ideal of the Lie algebra
L containing Lt such that the ideal 7(Lg) is commutative. We have

[Lo,Lo] = L* N DL = {0}
since we have W([Lo,LU]) = [m(Lo),m(Lo)] = {0}. O

THEOREM 2.6.5

A finite dimensional Lie algebra over a field of characteristic 0 is reductive if
and only if we have L+ N DL = {0}.

Proof. We write m for the canonical homomorphism of the Lie algebra L onto
the quotient Lie algebra L/L+. Suppose that we have L-NDL = {0}. We have

L=L"®DL
since we have
m(DL) = D(n(L))
= D(L/LY)=L/L*. O

PROPOSITION 2.6.13

Suppose that R is a commutative ring with identity and let M be a unital
module over R. We have hom(R, M) = M.

ProroOSITION 2.6.14
Suppose that

p1: L — hom Vq, p2: L — hom V,
are representations of a Lie algebra L.
p(x)f = p2(x)o f— fopi(z)
defines a representation p of the Lie algebra L on the vector space hom(Vy, V5).

Proof. We have

p(x1)p(2) f = pa(w1) o (p2(a2) o f — fopi(a2))
— (p2(@2) o f — fopi(x2)) o pr(z1)

and

[p(x1), p(x2)] f = (p2(21) 0 p2(w2) — p2(w2) 0 pa(z1)) © f
— fo(pi(z1) o pr(x2) — pr(x2) 0 pr(21)).

We have
[p(z1), p(2)]| f = [p2(®1), p2(x2)] © f = f o [p1(21), p1(z2)]
= pa([z1,22]) o f — f o p1([x1,22])
= p([l‘hxz])f- H
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WEYL’S THEOREM
Any finite dimensional representation of a finite dimensional semisimple Lie
algebra over a field of characteristic 0 is completely reducible.

THEOREM 2.6.6
Suppose that p is a finite dimensional representation of a finite dimensional
semisimple Lie algebra over a field of characteristic 0. We have H'(p) = {0}.

Proof of Weyl’s theorem. Suppose that L is a finite dimensional semisimple Lie
algebra over a field of characteristic 0 and let p be a representation of the Lie
algebra L on a finite dimensional vector space V.

Suppose that Vj is an invariant subspace for p. There exists a subspace V/
such that V = Vo & V. There exists an element f of hom (L, hom(V{, Vp)) such

thet () f)
_ (polx)  fla
”@’( 0 pa<x>)

for V. We have

S([z1, m2]) = po(1) f(22) + f21)p) (22) — polx2) f(x1) — f(22)p) (1)

for V(x1,z2) since we have p([z1,z2]) = [p(21), p(x2)]. The representations po
and p) are associated with a representation on the vector space hom(V{, V;) by
Proposition and we have df(x1,22) = 0 for V(z1,x2). There exists an
element fy of hom(V{, 1)) such that

f(x) = =0fo(z)
= —po(z) fo + fop(z)

for Va since we have H'(L,hom(V{,Vp)) = {0} by Theorem We define

(b 4
We have V =V, @ V. We have
oo 1) ()= (97 ) 6 1) ()
(i 12) ()
_ (po@c)fova T f(w)vi>
(
(

pr(z)vy

for V(z,v1). O
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LEMMA 2.6.1
Suppose that V is a finite dimensional vector space over a field of characteristic
0 and let L be a semisimple irreducible Lie subalgebra of hom V. We have
HY(L,V)={0}.

Proof of Theorem[2.6.6 Suppose that L is a finite dimensional semisimple Lie
algebra over a field of characteristic 0 and let p be an irreducible representation
of the Lie algebra on a finite dimensional vector space V. We define

Pl + ker p) = p(a)

for Vz. The Lie algebra L/ ker p = (ker p)* is semisimple. We have H'(p) = {0}
by Lemma Suppose that ¢ is an element of hom(L, V') such that d¢ = 0.
We have

Op(x1, 22) = p(x1)P(22) — p(x2)P(21) — P([21, T2]) =0

for V(z1,23). The subspace ker p = Dker p is contained in the subspace ker ¢.
We define

Bz +ker p) = o(x)
for V. We have

0¢(x1 + ker p, z3 + ker p) = 0¢(z1,22) =0

for V(x1,x5). There exists an element v of the vector space V such that ¢ = dv
since we have H*(p) = {0}. We have

b(x) = Bl + ker p)
= Ov(x + ker p)
= p(zx + ker p)v
= p(z)v
= Ov(x)
for Vz. We have H!(p) = {0}.
The proof is by induction on dim V. Suppose that dimV > 0. We may
assume that the representation p is reducible. There exists an invariant subspace
Vo for the representation p such that 0 < dim Vy < dim V. We have H'(py,) =

{0} and H'(py,v,) = {0} by the induction hypothesis. Suppose that ¢ is an
element of hom(L, V) such that d¢ = 0. We have

(w1, x2) = p(a1)p(w2) — p(x2)d(w1) — d([21,22]) = 0
for V(x1,22). We define an element ¢y v, of hom(L,V/Vj) by
v v, () = ¢(x) + Vo

for V. We have
Odv v, (w1, T2) = 0p(x1,72) + Vo =0
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for V(z1,x2). There exists an element vy + Vj of the vector space V/Vp such
that ¢yy, = 0(v1 + Vo) since we have H'(pyy,) = {0}. We have

(x) + Vo = dvyv, ()
= 0(v1 + Vo) ()
= pv/v, () (01 + Vo)
= p(z)or + Vo
for Vz. We define an element ¢y, of hom(L, Vp) by

dvy () = d(z) — p(x)01
for V. We have

Ovy (w1,2) = 98(w1,w3) — (p(a1)p(w2) — plw2)p(a1) = p([w1,22]) )or = 0

for V(z1,z2). There exists an element vy of the vector space Vp such that
bv, = Ovg since we have H'(py,) = {0}. We have

d(x) = v, (z) + p(z)11
= dvo(z) + p(x)v1
= p(z)(vo + v1)
= 0(vg + v1)(x)

for Vz. O

LEMMA 2.6.2 (Schur)
Suppose that p is an irreducible representation of a Lie algebra on a vector space
V. An element C of hom V' \ {0} is an epimorphism if [p(z), C] = 0 for V.

Proof. The subspace CV # {0} is invariant for p. O
Suppose that B is a bilinear form on a finite dimensional vector space V.

PROPOSITION 2.6.15
We have the following provided that B is nondegenerate.

n

1. There exist bases {ek}:=1 and {fk}Z=1 such that (B(ei,fj)) 1.

ig=1
2. The element Y ;_; ex ® fi is independent of the choice of the bases.

Proof. 1. Suppose that {ex},_, is any basis. The matrix (B(e;,¢;)); ._, is

ij=1
invertible and let (e1,...,e,) = (f1,..., fn)(B(ei7 ej)) _,- We have

n

.3

(B 1)y = (Blewen) s (Blesen) ) =1

by Remark of 489 (cf. Algebra).
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2. Suppose that
(v1,...,0,) = (€1,...,e,)P, (w1, oywn) = (f1,- s frn)Q

are arbitrary bases such that (B(v;, wj))?jzl = 1. We have
1=PTQ
by Remark of 489 (cf. Algebra). We have

n
ka®wk = Z(ZP”e ) ® w;
k=1

PROPOSITION 2.6.16
The bilinear form B is nondegenerate if and only if the linear mapping

z = [y — B(z,y)] (2.6)
is an isomorphism of V onto V*.

Proof. Suppose that B is nondegenerate. We write {5k}::1 for the dual basis
of the basis {fk}zzl The linear mapping (2.6|) is isomorphism since

B(ey, z) = 6*(z)

for Va and for VEk.
Suppose that the linear mapping (2.6) is an isomorphism. Suppose that
{fk}Z:1 is an arbitrary basis and let {5k}k:1 be the dual basis. There exists a

basis {ek}::1 such that
Bleg,x) = 8" (x)
for Va and for Vk. We have (B(e;, f])) =1. O

1,j=1

Suppose that V is a finite dimensional vector space over a field of character-
istic 0 and let L be a semisimple Lie subalgebra of hom V.

PROPOSITION 2.6.17
An invariant symmetric form on L

(21, 22) > tr(z122)

is nondegenerate.
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Proof. The ideal L+ = {z € L : tr(zL) = {0} } is solvable by Chevalley’s
theorem since tr(L* - DLY) = tr(L+ - L) = {0}. We have L+ = {0}. O

n

There exist bases {ek}:=1 and {fk}:=1 such that (tr(eifj))”:l =1 by
Proposition [2:6.15] We write

(adz)(eq,...,en) = (e1,...,en)a(x), (adx)(f1,...,fn) = (f1,--., fn)B(x)
for V.

PROPOSITION 2.6.18
We have the following.

n

1. We have a(z) = (tr((adm)(ej)fi)) for V.

ij=1
2. We have a(z) + B(z)T = 0 for Vz.
Proof. 1. We have tr((adz)(e;) f;) = aij(z).
2. We have a;;(x) + B;i(x) = tr((ad x)(e;) f;) + tr(ej(ad z)(f;)) = 0. O

We define
C= Z 6kfk~
k=1

PropPOSITION 2.6.19
We have [x, C’] =0 for Vx of L.

Proof. We have

[2,C] = ((adx)(ex) fr + ex(ad z)(fr))

k=1
n

ij=1

Proof of Lemma[2.6.1. We may assume that L # {0}. We have tr C' = dim L #
0 since the underlying field is of characteristic 0. The element C' is invertible by

Schur’s Lemma.
Suppose that ¢ is an element of hom(L, V') such that 9¢ = 0. We have

Op(x1, x2) = 21¢(22) — T2 (1) — P([w1, 22]) =0
for V(x1,x2). We define
v=C"" " end(fr)-
k=1
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Suppose that z is an arbitrary element of the Lie subalgebra L. We have

ov(x) = xv
=C7'2 ) erd(fr)
k=1
= C’_l( (adzx)(e Z errd(fr) )
k=1
where
Z(adx)(ek)qb(fk) = Z aij(z)eip(f;)
k=1 ijfl
= - Z ﬂJ'L ez¢ fj
==Y ed((adz)(fr)).
We have

1Zek( ((ad2)(fe) + (/)

=c! Z%fk(b(l") = ¢(x). O
k=1

PROPOSITION 2.6.20
Suppose that L is a finite dimensional semisimple Lie algebra over a field of
characteristic 0 and let p be a finite dimensional representation of L. We have

tr p(L) = {0}.
Proof. We have

trp(L) = tr p(DL)
= spantr[p(L), p(L)] = {0}
since we have L = DL by Corollary O

LEMMA 2.6.3 (Schur)
Suppose that p is an irreducible representation of a Lie algebra over an alge-
braically closed field on a finite dimensional vector space V and let C' be an
element of hom V. The element C is scalar if we have [p(z),C] = 0 for Vz .

Proof. We may assume that V' # {0}. There exists an eigenvalue v of the
element C' since the underlying field is algebraically closed. The subspace (C —
v)V # V is invariant for the irreducible representation p. O
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THEOREM 2.6.7
Suppose that V is a finite dimensional vector space over an algebraically closed
field of characteristic 0 and let L be a semisimple Lie subalgebra of hom V.

1. Suppose that
T=S+N

is the Jordan decomposition of an element of the Lie subalgebra L. The
elements S and N belong to the Lie subalgebra L.

2. Suppose that p is a representation of the Lie subalgebra L on a finite
dimensional vector space.

p(z) = p(S) + p(N)
is the Jordan decomposition.

Proof. 1. The restriction of the adjoint representation ad of the Lie algebra
hom V' to the Lie subalgebra L is completely reducible by Weyl’s theorem.
There exists an invariant subspace L' for ad L such that we have hom V =
L& L+. The set [L, Lﬂ is contained in the set L. The subspaces L and
L+ are invariant for the element ad S by Corollary since

adz =adS+adN

is the Jordan decomposition by Corollary 2.4.1] There exists a unique ele-
ment S+ of L+ such that the element S— S+ belongs to the Lie subalgebra
L. We have

(St L] =[S—(S—S*),L] =LnL*={0}.

The Lie subalgebra L is completely reducible by Weyl’s theorem and let

V=P
k=1
be a decomposition into an internal direct sum of irreducible invariant
subspaces for the Lie subalgebra L. Suppose that
T = Sk + N
is the Jordan decomposition for Vk. We have
S = diag(S1,...,Sn), N = diag(Ny,...,Np).
We have

0=trz;
=tr Sy, = tr S
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for Vk by Proposition [2.6.20 The element S,i- is scalar for Vk by Schur’s
Lemma since we have

0=[r,54] = diag([ﬂﬁhsﬂa--w [xn,S,ﬂ)

for V& of the Lie subalgebra L. We have S+ = 0.

2. We write ad for the adjoint representations of the Lie subalgebras L and

p(L).
adz=adS +adN

is the Jordan decomposition by Corollary and Corollary The
element ad p(S) is semisimple since we have

L= @ker(adS —v)

by Proposition [2.3.3] and we have

p(L) = Z p(ker(ad S — v))
= Zker(adp(S) —v).

The element ad p(NN) is nilpotent since the element ad N is nilpotent.
ad p(z) = ad p(S) + ad p(N)

is the Jordan decomposition. The Lie subalgebra p(L) = L/kerp is
semisimple by Theorem and

p(@) = p(S) + p(N)

is the Jordan decomposition since the adjoint representation of the Lie
subalgebra p(L) is faithful. O

DEFINITION 2.6.6
An element z of a finite dimensional semisimple Lie algebra over an algebraically
closed field of characteristic 0 is said to be semisimple (resp. nilpotent) if the
element ad z is semisimple (resp. nilpotent).

DEFINITION 2.6.7
A Lie subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic O is called a toral subalgebra if it consists
of semisimple elements.

PROPOSITION 2.6.21
A toral subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is abelian.
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Proof. We write ad the adjoint representation of the Lie subalgebra L. We
assume that the Lie subalgebra L is not abelian. There exist elements x; and
x2 of the Lie subalgebra L such that we have [x1,z2] # 0. We have

L= @ker(ad 1 — V)
= @ker(ad xo — V).

since the elements ad z; and ad ze are semisimple by Corollary There
exists an element v # 0 such that we have ker(ad 1 — v) # {0} since we have
L # ker(adzi). We may assume that [z1,22] = vae and let 1 = @, z1, be
the decomposition in the direct sum @, ker(ad zo — v). We have

—vxg = [x9, 21| = @Vﬂ';lu =0
17

since the element —vzo belongs to the subspace ker(ad xs). O

2.7 Lie Groups

ProrosiTION 2.7.1
Any two points of a connected smooth manifold belong to the image of some
smooth curve of the real line into the manifold.

PROPOSITION 2.7.2
E| Suppose that A is an involutive distribution of rank m on a smooth manifold
and let H be an integral manifoldﬂ of the distribution A. Suppose that U =
C(0) is a flat chartﬂ with respect to the distribution A. A component of the
manifold H NU is an open set of some slice

(o) x { (g, ah) |
and a regular submanifold.

THEOREM 2.7.1 (Global Frobenius Theorem)
E| The collection of all maximal connected integral manifolds of an involutive
distribution on a nonempty smooth manifold forms a foliation’]

THEOREM 2.7.2
An involutive distribution on a smooth manifold induces a foliation.

L[, Proposition 19.16].
2[4 p. 491].

3 p. 496].

4[4, Theorem 19.21].
5[] p. 501].
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THEOREM 2.7.3
Suppose that f is a homomorphism of a Lie group G into a Lie group H. The
following diagram commutes.

GL)H

expT Texp

Lie(G) —L— Lie(H)

Proof. Suppose that X is an element of the Lie algebra Lie(G). We have

flexp X) = em((af(eXp(tX)))

ot ) :exp(f*(X))

t=0
since the mapping ¢t — f (exp(tX )) is a one-parameter subgroup. O
COROLLARY 2.7.1

The exponential mapping of a Lie subgroup of a Lie group is the restriction of
the exponential mapping of the Lie group.

PRroOPOSITION 2.7.3
Suppose that v; and v, are smooth vector fields on a smooth manifold. We have
Ly, vy = [v1,v2].

Proof. We write 6; and 6, for the flows generated by the smooth vector fields
v1 and vo. We have

0
(L)) = (G0t n(Oi(0)@))
oty £1=0
Suppose that f is an arbitrary smooth function. We have

(Loy2) (@)(f) = (a‘i (62(0)(@)) (F o am—m))

t1=0
(7
= | =——=—f001(—t1) 0b(t2) 0 91(t1)(x)>
Ot10ts (t1,t2)=(0,0)
since we have

(aatg 0 61(—t1) 0 ba(ts) 0 el(tl)(:c)) = (fobu(=t)),v2(62(1) (@)

to=0
= 02(01(t1)(x)) (f 0 01(—t1)).
We have

(Loo2))(1) = (g d ©1(12) o 0a(t2) 0 B1(1)(0))

(t1,t2,t3)=(0,0,0)

_ (62&3f o el(tg) o Qg(tg) o el(tl)(l'))

(t1,t2,t3)=(0,0,0)
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We have

(é)t?atgf 061 (t3) 0 Oa(t2) 0 b1 (tl)(x)>

(t1,t2,t3)=(0,0,0)

82
=|z—F5—foba(ta)o 91(751)(95)>
<6t18t2 (t1,t2)=(0,0)

and we have
82
(mf 0 01(t3) 0 Oa(t2) 0 61 (tl)(x))

(t1,t2,3)=(0,0,0)

_ (af’at Fot(ty) oez(m(m))

(t1,t2)=(0,0) '
‘We have

<6t‘?;bf 0 6a(tz) 0 01(t1)(x)>

(t1,t2)=(0,0)

- (aatlw (91(t1)(x))(f)>

t1=0

5 ' of (01(t1)(x
_ <%Zv§ (91(151)(5”))f(6(;)()))t1=0

and we have

(Loyv2) (@) (f) = vi(2) (v2(f)) — v2(2) (01(f)) = [v1,v2)(2)(F). O

THEOREM 2.7.4
Suppose that X; and Xs are left invariant vector fields on a Lie group. The
following are equivalent.

1. We have [X1, X3] = 0.

2. We have exp(t1X1) exp(t2X2) = exp(t2X2) exp(t1X7) for any (¢1,t2).

t1 to t2 t1
/ Xl o X2 = / X2 (e} Xl

3. We have

for any (t1,t2).
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Proof. Suppose that we have [X;, X3] = 0. We show that we have

to t1
/ X1 O/ X2 / X2 O/ X1

for any (t1,t2). We write

(t) = /tXl, 05 (t) = /txz.

It is sufficient to show that we have

%91(’51) 0 0a(t2)(9) = X2(01(t1) 0 fa(t2)(9))-

2

We have
9 01(12) 0 0x(t2)(9) = 02 (11)0 -2 0(12)(9) = 01 (11). Xa (Ba(t2)(5).
Ots Oto

It is sufficient to show that we have

%91(—151)*)(2 (61(t1) 0 02(t2)(g)) = 0.

We write h = 01(t1) o0 02(t2)(g). We have

0 (—t),Xa (01 (11) 0 0a(t2) ()

atl O+ A) X (Bt + A1) 0 6a(t3)(0)) — br(—11). Xa (B2(12) 0 alt) )
o Aty
= oy(t). Jim PR (91A<tAlt1><h>) — Xa(h)
:61(—t1)*<£191( tl)*Xg(Hl(tl)(h))>tl_0
= 02(~t1)((Lx, X2) (1)) =0 )

THEOREM 2.7.5
Suppose that f is a smooth function on an open interval of the real line and let
xo be a point of the open interval. Suppose that n is a positive integer. The
function on the open interval

xb—>/ )i 1f”)(x0—|—9(sc—zo))d0
is smooth and we have
n—1
f(k)( )( B )k ( — )n ! n— n
o) = 30 ek B [ a0 o+ 6a =) a9

for any z.
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PROPOSITION 2.7.4
Suppose that X; and X, are elements of the Lie algebra of a Lie group.

X X n
exp(X; + X2) = lim (exp(l) exp<2>) .
n— oo n n

exp(Xy + X3) = (exp X1)(exp X3) = (exp Xz)(exp X1)

1. We have

2. We have

provided that we have [X7, Xz] = 0.

THEOREM 2.7.6
The following are equivalent for a subgroup of a Lie group.

1. The subgroup is closed.
2. The subgroup is a regular submanifold.
3. The subgroup is an imbedded Lie subgroup.

PROPOSITION 2.7.5
Suppose that f and g are homomorphisms of a connected Lie group into a Lie
group. We have f = g provided that we have D f(e) = Dg(e).

Proof. The following diagram commutes.

G Iy m
exp)[ Texp
Lie(G) =% Lie(H)

The homomorphisms f and g are identical on a neighborhood of the identity
since the exponential mappings are local diffeomorphisms at the origins. We
have f = g since the connected Lie group is generated by the neighborhood of
the identity. O

THEOREM 2.7.7
E| Suppose that € is a smooth right action of a Lie group G on a smooth manifold
M.

1. The mapping
Rx M — M, (t,p) — G(p, exp(tX))

is a smooth global flow for any element X of the Lie algebra Lie(G).

64, Theorem 20.15].
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2. The mapping

Lie(G) - V(M), X —6(X)= [p — (;) O(p,exp(tX))| (2.7)
t=0
is a homomorphism of Lie algebras.

DEFINITION 2.7.1
The homomorphism (2.7)) is called the infinitesimal generator of the smooth
right action 6.

PRrROPOSITION 2.7.6
Suppose that X is a smooth manifold and let V' be a finite dimensional subspace
of the real vector space V(X). The mapping

VxX—>TX, (v,z) = v(x)
is smooth.

Proof. Suppose that {ej }?:1 is a basis of the vector space V' and let

We have

d
n 9]
:Z(vlelf(x)Jr +v eﬁ(x))% O
k=1
COROLLARY 2.7.2
Suppose that G is a Lie group. The mapping
Lie(G) x G —» TG, (X,9)— X(9)

is smooth.

PROPOSITION 2.7.7
Suppose that X is a smooth manifold and let V' be a finite dimensional subspace
of the real vector space V(X) such that each element of the set V' is complete.
The mapping

t
RxVxX—X, (t,v,x)»—>/v(x)

is smooth.
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Proof. The mapping
VXX —=Tun)(VxX)=VaoTl.X, (v,2) = 0@ v(x) (2.8)

is a smooth vector field. The mapping

t
RxVxX—>VxX, (t,v,x)H@(t,v,x):(v,/v(x))
is the global flow generated by the vector field (2.8]) since we have
B a0(t,v,x) a [t
0(0,v,z) = (v,x), — = 0® En v(x)

:O@U(/tv(m)). O

COROLLARY 2.7.3
The exponential mapping of a Lie group is smooth.

PROPOSITION 2.7.8
We have D exp(0) =1 for any Lie group.

Proof. We have

0
exp, X = <8t exp(tX))t_O =X

for any X. O
ProprosITION 2.7.9

The image of a smooth curve of a nonempty open interval of the real line into a

smooth manifold is contained in the unique leaf of the foliation induced by an

involutive distribution provided that its each velocity belongs to the involutive
distribution.

ProrosiTiON 2.7.10
Suppose that G is a connected Lie group and let V' be any neighborhood of the
origin of the Lie algebra Lie(G). We have

G=|J{(expX1)- (exp Xp) : (Xp)joy € V" }.

n=1

ProrosiTIiON 2.7.11
Suppose that G is a connected Lie group and let M be a smooth manifold. The
mapping of the set

{ smooth right actions of the Lie group G on the manifold M }
into the set
{ complete actions of the Lie algebra Lie(G) on the manifold M }

is injective.
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Proof. Suppose that 6; and 6, are smooth right actions of the Lie group G on
the manifold M such that we have 01 (X) = 65(X) for any element X of the Lie
algebra Lie(G). We have

(01)expx = /1 01(X) = /192(X) = (02)exp x

for any element X of the Lie algebra Lie(G). Suppose that ¢ is an arbitrary
element of the Lie group G. We can write g = (exp X1) - - (exp X,) since the
Lie group G is connected. We have

(91)9 = (al)eXPXn 0--+0 (Ql)eXle
= (92)eprn 0---0 (92)epr1 = (62)9- O

THEOREM 2.7.8 (Fundamental Theorem on Lie Algebra Actions)

E] Suppose that G is a simply connected Lie group. We have

{ smooth right actions of the Lie group G on a smooth manifold }

= { complete actions of the Lie algebra Lie(G) on a smooth manifold }.

Proof. Suppose that 6 is a complete action of the Lie algebra Lie(G) on a
nonempty smooth manifold M. The mapping

Lie(G) — V(G x M), X — X 860(X)

is an injective homomorphism of Lie algebras. The set

A= || Algp, Algp)={X@0X)(gp): X € LieG) }
(9,p)EGXM

is an involutive distribution of rank dim G. We write

{G(g,p) :(g,p) GGXM}

for the foliation induced by the involutive distribution.
The mapping

1
Lie(G) x G x M — G x M, (X,g,p)H(geXpX,/ G(X)(p))
is smooth. The smooth mapping

RxGxM—=GxM,  (tgp (9 exp(tX),/1 0(1X)(p))

7[, Theorem 20.16].
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is the global flow generated by the smooth vector field X @ 60(X) for any element
X of the Lie algebra Lie(G) since we have

t

5 o), [ 0000) = X (gepex) & 2 [ 0000
— X(gexp(tX)) 2 6(0)( | 60X)9)

1
= X @ 000) (gesp(tX), [ 0)(0))

The point
1
(exp(tX), [ 6(X)(0)

belongs to the leaf G, ).

Suppose that py is an arbitrary point of the manifold M. We write G, =
G(e,po) and let mp, be the ristriction of the projection 7g to the leaf Gp,. The
smooth mapping 7, is a submersion since we have

Dy, (9,p) (X @ 0(X)(g,p)) = X(9)

for any element X of the Lie algebra Lie(G).

We show that the smooth submersion 7,, is onto. Suppose that g is an
arbitrary element of the Lie group G. We can write g = (exp X1) - - (exp Xp,)
since the Lie group G is connected. The point

1 1
(9:9) = ((exp X0) -+ exp X, [ 0K o0 [ 60X1) (o)
belongs to the leaf G, .
There exists a connected neighborhood V' of the origin of the Lie algebra
Lie(G) such that the exponential mapping is a diffeomorphism of the domain

V onto the domain expV. Suppose that p is an arbitrary point of the set
M (7'('p_01 (9)). The smooth mapping

1
gexpV = Gpy,  gexpX 5 oy(gexp X) = (geXpX,/ 0(X)(p))

is an imbedding. Suppose that (gexp X, ¢) is an arbitrary point of the open set
T, (gexp V). The point

(g:9) = (9, [ 0(X)(q))

belongs to the leaf G}, and we have

op(gexp X) = (geXva/ 0(X)(p)) = (gexp X, q).
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The mapping 7, is a smooth covering since we have
7r501 (gexpV) = |_| op(gexpV).
pETAM (T (9))

The smooth covering m,, is a diffeomorphism since the Lie group is simply
connected.

We define
M x G — M, (p.g9) = 0(p,g) = mar o, (g). (2.9)
We have
1
0(p, (exp X1) -+ (exp X,,) / (X --~o/ 0(X1)(p) (2.10)

for any element (p, (Xj)7_;) of the set M x Lie(G)" for any n. The mapping
(12.9) is a smooth right action and we have

(2) stewix)=(3) [ X)) = 0(X)(p). O

THEOREM 2.7.9
ﬂ Suppose that G is a simply connected Lie group. We have
{ homomorphisms of the Lie algebra Lie(G) into the Lie algebra Lie(H) }
= {homomorphisms of the Lie group G into the Lie group H }
for any Lie group H.

Proof. A homomorphism f, of the Lie algebra Lie(G) into the Lie algebra Lie(H)
is a complete action of the Lie algebra Lie(G) on the Lie group H. We define a
smooth mapping f(g) = f«(e, g). We have

700 = (57),_-leccxp(ex)

= <gt>t=0f(exp(tX))

for any element X of the Lie algebra Lie(G). By Proposition it is sufficient
to show that the smooth mapping f is a homomorphism of groups. By the

equation we have
1
F(lespx0) - (ep X)) = [ f.06) 0o [ £.0X00)

/ (X0 / f(x
= flexp X1)--- f(exp X,,)

for any element (Xj)}_, of the set Lie(G)™ for any n. O
84, Theorem 20.19)].
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PRrOPOSITION 2.7.12
The mapping

G— (homLie(G))X, g— Adg= {X — (i) glexptX)g*
t=0

is a representation of a Lie group G.

THEOREM 2.7.10
We have D(Ad)(e) = ad for any Lie group.



Chapter 3

Root Systems and
Semisimple Lie Algebras

3.1 Zariski Topology

Suppose that V is a finite dimensional vector space over a field F and let (ek)zzl
be the dual basis of some basis (ey)p_; of the vector space.

ProrosiTiON 3.1.1
The mapping

S(V*) > F, e f(@)
is a homomorphism of algebras with identity for any point x of the space V.

ProrosiTION 3.1.2
There exists a canonical homomorphism of algebras with identity of the algebra
S(V*) into the algebra FV.

DEFINITION 3.1.1
Suppose that S is a subset of the algebra S(V*). We write

S7H0) =[] £71(0).
fes

ProrosiTION 3.1.3
Suppose that S is a subset of the algebra S(V*). We have

S7H0) = (8)7H(0).

PROPOSITION 3.1.4
Suppose that (Sk)i™,is a finite sequence of subsets of the algebra S(V*). We
have

S 1(0) = (S1-++ Sm)H(0).

Cs

k=1



88 CHAPTER 3. ROOT SYSTEMS AND SEMISIMPLE LIE ALGEBRAS

ProrosiTIiON 3.1.5
The collection

{V\'S7H0) : S is a subset of the algebra S(V*) }
is a topology of the space V.

ProrosIiTION 3.1.6
Suppose that the field T is infinite and let f be an element of the space S(V*)\

{0}
1. The Zariski open set V' \ f71(0) is not empty.
2. The Zariski open set V' \ f~1(0) is infinite if we have dim V' > 1.

Proof. The proof is by induction on the nonnegative integer n = dim V. Suppose
that we have n = 0. The Zariski closed set f~1(0) is empty. Suppose that we
have n > 0. We can write

fle) = fmlel, . e D)™ + -+ folel,...,e" ), flel, . .,e" ) #£0.

There exists an element (x!,...,2"71) of the space F*"~! such that we have

fm(zt, ..., 2" 1) # 0 by the induction hypothesis. We define
gle) = flzt,...,2" Ye) = fu(at, .., 2" He™ + -+ fo(zh, ..., 2" ).
The Zariski open set F \ g~1(0) is infinite. O
ProposITION 3.1.7

Suppose that the field F is infinite. Any finite intersection of nonempty Zariski
open sets of the space V is not empty.

PROPOSITION 3.1.8
Suppose that the field F is infinite. The algebra S(V*) is a subalgebra with
identity of the algebra FV.

ProrosIiTION 3.1.9
We have

(e =2z, .. e —x"))_l(O) = {z}

for any point . = >, _,; x¥ey, of the space V.

DEFINITION 3.1.2
We define a linear mapping

0
8.’Ej
on the algebra Flzq,...,z,] by
ax’;fll e xnmn _ mj(E;nl . xg"
8l‘j T

for any m.
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ProrosiTIiON 3.1.10

The linear mapping — is a derivation of the algebra Flxq, ..., x,].

633j

Proof. We show that we have

of(z)g(z of(x dg(x
) 01 g0 4 () 2900)
J J J
for any elements f(z) and g(x) of the algebra Flxy,...,z,]. We may assume
that the polynomials f(z) and g(z) are monomials since the mappings
Of(x)g(x) of(x) 9g(x)
(7). 9@) = P (1), 0(w) = o) + 1) 5
are bilinear. O

ProrosiTION 3.1.11
The vector space V is a subspace of the vector space Der S(V*).

Suppose that W is a finite dimensional vector space over the field F and let
(eF)m_| be the dual basis of some basis (ex)", of the vector space.

PRrOPOSITION 3.1.12

There exists a canonical linear mapping of the space S(V*) @ W into the space
WY =FeW.

ProrosiTiON 3.1.13
Suppose that the field F is infinite. The space S(V*) ® W is a subspace of the
space WV.

ProrosiTION 3.1.14
Suppose that X is a commutative algebra with identity over the field F.

1. There exists a canonical mapping
SV x(XeV) =X,

(f,x) = (f(el,...,e”),Z:ck ®6k) = f(z) = f(z!, ..., z").
k=1

2. The mapping
S(V*) = X, [ (=)

is a homomorphism of algebras with identity for any element z of the
space X ® V.
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DEFINITION 3.1.3
We write

for any element

(9. 1) = (g(e",....e™). > fFets .. e ®ep)
k=1

of the space S(W*) x (S(V*) @ W).
Suppose that U is a finite dimensional vector space over the field F.

PropoOSITION 3.1.15
There exists a canonical mapping

S(VH@W x S(U*) @V — S(U*) e W,

(9= d"@er.f)=»gof=> (¢"of)@e
k=1

k=1

ProproSITION 3.1.16
The following diagram commutes.

S(VHQW x S(UH) @V —— SU*) oW
WV x VU — WV

PropPOSITION 3.1.17
We have the following.

1. There exists a canonical mapping

SVHeW — S(V*) ® hom(V,W), f=r.

2. We have

m n 7 1 n
f/:ZZaf (eave'j"ae )ei®ej

i=1 j=1

for any element

fzz:fk(el,...,e”)@ek
k=1

of the space S(V*) @ W.
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3. There exists a canonical mapping

SVYeV = SV, f > det f.
4. We have . n
det f’ :det(af (e AL A )>
Oel ij=1

for any element
n
F=Y e e e
k=1

of the space S(V*)®@ V.

ProposITION 3.1.18
Suppose that X is an algebra over the field F. There exists a canonical linear
mapping

X ® hom(V, W) ® X ® hom(U,V) = X ® hom(U, W),
T1RIVT R f = (11 ®g)o(12® f) =m102® (g0 f).
THEOREM 3.1.1

Suppose that (g, f) is an element of the space S(V*) @ W x S(U*) @ V. We
have

(gof) =(g"of)of"

ProrosiTION 3.1.19
Suppose that f is an element of the space S(V*) ® V. We have

(det f')(x) = det(f'(z))
for any point z of the space V.

ProprosITION 3.1.20
Suppose that the field F is of characteristic 0. An element f of the space
S(V*) ® V is algebraically independent over the field F if we have det f # 0.

Proof. Suppose that the element f is algebraically dependent over the field F.
We show that we have det f/ = 0. There exists an element g of the space
S(V*)\ {0} such that we have go f = 0. We may assume that we have

degg = min{ degg : g is an element of the set S(V*)\ {0}
such that we have go f = O} > 1.
We have
V={z:(¢of)(x)=0}U{z:detf'(x) =0}

since we have

0=(gof) =(gof)of.
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0
:...——g:Osincewehave

0
Suppose that we have ¢’ o f = 0. We have = Sen

99
Oel

dg dg
degg,...,deg@ < degg.

The element g is constant since the field F is of characteristic 0. This is a
contradiction. We have det f' = 0. O

3.2 Commutative Algebras

In this section we require the following.

1. An algebra is a commutative algebra with identity.

2. A subalgebra is a subalgebra with identity.

3. A homomorphism of algebras is a homomorphism of algebras with identity.
Suppose that R; is a subring of a ring Rs.

DEFINITION 3.2.1
An element z of the ring Ry is said to be integral over the ring R; if there exists
a monic polynomial f over the ring Ry such that we have f(z) = 0.

ProProOSITION 3.2.1
Suppose that S is a subset of the ring Ry that is integral over the ring Ry. The
ring R;[S] is integral over the ring R;.

PRropPOSITION 3.2.2
Suppose that E is an extension field of a field F. An element of the field E is
algebraic over the field F if and only if it is integral over the ring F.

ProrosiTION 3.2.3
Suppose that E is an extension field of a field F and let S be a subset of the
field E that is algebraic over the field F. The field F(S) = F[S] is algebraic over
the field F.

PROPOSITION 3.2.4
Suppose that R is a subring of a field F. The field Q(R) is a subfield of the field
F.

PROPOSITION 3.2.5
Suppose that the ring Ry is an integral domain. The field Q(R;) is a subfield
of the field Q(R2) and the following diagram commutes.

R, Em— Rs

l l

Q(R1) —— Q(R2)
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PROPOSITION 3.2.6
Suppose that the ring Ry is an integral domain that is integral over the integral
domain R;. The field Q(R2) is algebraic over the field Q(Ry).

Proof. The field Q(R2) = Q(R1)(Ry) is algebraic over the field Q(R;) since the
integral domain Ry is algebraic over the field Q(Ry). O

ProrosiTION 3.2.7
Suppose that the ring Rs is an integral domain that is integral over the integral
domain R;. The integral domain R; is a field if and only if the integral domain
R is a field.

Proof. Suppose that the integral domain R; is a field. The integral domain Rs
is algebraic over the field R; since the field Q(R3) is algebraic over the field R;.
We have Q(R2) = Ri(Rz2) = R1[R2] = R».

Suppose that the integral domain Rs is a field and let = be an arbitrary
element of the set Ry \ {0}. We can write

(:1:71)" + 7‘1(:1771)”71 +--+r,=0
since the element 2~ is integral over the integral domain R;. The element
= —(ry 4+ Frpa™h
belongs to the integral domain R;. O

THEOREM 3.2.1
Suppose that R is an integral domain and let S be a finite set that is algebraic
over the field Q(R). There exists an element x of the set R\ {0} such that the
integral domain R[z~1][9] is integral over the integral domain R[z~!].

PROPOSITION 3.2.8
An ideal P of a ring R is prime if and only if the ring R/P is an integral domain.

PROPOSITION 3.2.9
An ideal M of a ring R is maximal if and only if the ring R/M is a field.

ProprosITION 3.2.10
Any algebraically closed field is infinite.

Proof. 1t is sufficient to show that the algebraic closure of the field F,, is infinite
for any prime number p. The algebraic closure of the field I, is the algebraic
closure of the field Fy» for any positive integer n. O

ProrosIiTION 3.2.11
Suppose that F is a field. We have

for any element f(z) of the set F[z] \ {0}.
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Proof. We have

1 Flx]
Flz][ =] = lim .
A7) = B oy
There exists an element x¢ of the algebraic closure F such that we have f(zg) # 0
since the algebraic closure F is infinite by Proposition [3.2.10, We write fo(x)
for the minimal polynomial of the element zy over the field F. Suppose that
the element fo(x)~! is contained in the integral domain (3.1]). There exists an

element g(z) of the integral domain F[x] such that we have

(3.1)

LI C))
folz)  fla)m
We have f(xg)™ = fo(xo)g(xo) = 0. This is a contradiction. O

THEOREM 3.2.2
Suppose that E is an extension field of a field F. The field E is finite dimensional
over the field F if the ring E is finitely generated over the field F.

Proof. We can write E = Flzy,...,2,] and the proof is by induction on the
nonnegative integer n. Suppose that we have n > 0. The field E is finite
dimensional over the field F(x1) by the induction hypothesis. It is sufficient to
show that the element z; is algebraic over the field F. Suppose contrary. There
exists an element f(z1) of the set Flz1] \ {0} such that the field E is integral
over the integral domain

1

Flzy||—— F(x 3.2

il # Fle) (32)

by Theorem The integral domain (3.2)) is a field by Proposition
This is a contradiction. O

PROPOSITION 3.2.12
Suppose that V is a finite dimensional vector space over an algebraically closed
F and let M be a maximal ideal of the algebra S(V*). We have S(V*)/M =TF.

Proof. We can write S(V*) = Flxy,...,z,]. We have
Flay,..., 5]
M

The field Flz1+ M, ..., 2, + M] is finite dimensional over the field F by Theorem
We have Flz; + M,...,x, + M] = F since the field F is algebraically
closed. O

=Flx1 + M,...,z, + M].

ProrosiTION 3.2.13
Suppose that [F is a field and let v be a point of the space F".

1. We have

(1 = V1, &y — ) =Flzq] (1 — 1) + - + Flzg, .o 2] (@ — vn)

= { f(x) €Flz1,...,x,]: f(r) =0}, (3.3)
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2. The ideal (3.3) is maximal.
Proof. The ideal (3.3) is maximal since we have

F[xla R 7x’n]

(xl —Vi,..., T _Vn)

=F. 0O

PropPoOSITION 3.2.14
Any finite dimensional vector space is contained in the set of maximal ideals of
the symmetric algebra of the dual space.

THEOREM 3.2.3
Any finite dimensional vector space over an algebraically closed field is the set
of maximal ideals of the symmetric algebra of the dual space.

ProprosITION 3.2.15
Suppose that the ring Rs is integral over the ring R; and let S be a proper
multiplicative subset of the ring R;. The ring RyS~! is an integral extension of
the ring R;.S~1.
Ry E— Ry

! l

R15‘1 Em— RQS_l

ProprosITION 3.2.16
Suppose that the ring Rs is integral over the ring R; and let J be an ideal of
the ring Ry. The ring Ro/J is an integral extension of the ring Ry /Ry N J.

Rl E— R2

! !

Rl/Rl nNJ —— RQ/J

PrRoOPOSITION 3.2.17
Suppose that the ring Ry is integral over the ring R; and let P be a prime
ideal of the ring Ry. The ideal P is maximal if and only if the ideal Ry N P is

maximal.
R1 —_— R2

| |
Ri/RiNP —— Ry/P

DEFINITION 3.2.2
A ring is said to be local if it has a unique maximal ideal.

ProPOSITION 3.2.18
Suppose that P is a prime ideal of a ring R.

1. The set R\ P is a proper multiplicative subset of the ring R.
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2. The ring R(R\ P)~! is local and let M be its unique maximal ideal. We
have

Q(R/P)=R(R\ P)"'/M.

ProrosiTiON 3.2.19
Any proper ideal of a ring is contained in a maximal ideal.

COROLLARY 3.2.1
Any nontrivial ring has a maximal ideal.

THEOREM 3.2.4
Suppose that the ring Rs is integral over the ring Ry and let P; be a prime ideal
of the ring R;. There exists a prime ideal P, of the ring Ry such that we have
Pr=R NP

Proof.
Rl E— RZ

| P

Ri(Ri\ Pi)™! —— Ra(Ry\ P!
The ring Ro(R; \ P1)~! has a maximal ideal M, and let

M, = Rl(Rl \ P1)71 N Mo
be the unique maximal ideal of the local ring Ry (R \ Py) L.

Ry — Ry

| Jr

Rl(Rl\P1)_1 E— RZ(RI\PI)_I

l l

Rl(Rl \Pl)il/Ml —_— RQ(Rl \Pl)fl/Mz

The ideal P, = f{l(Mg) is prime and we have P; = ffl(Ml) =RiNP,. O

Rl/Pl Em— RQ/PZ

! !

Rl(Rl \Pl)_l/Ml e RQ(Rl \P])_l/M2

THEOREM 3.2.5
A homomorphism of a ring into a field extends to a homomorphism of any
integral extension into the algebraic closure.
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Proof. Suppose that the ring Ro is integral over the ring R; and let f be a
homomorphism of the ring R, into a field F.

R1 —_— RQ
7|
F

The ideal P; = ker f is prime and there exists a prime ideal P of the ring Ry
such that we have P; = Ry N Py. The field Q(R2/Ps) is algebraic over the field
Q(R1/P1). The algebraic closure of the field Q(R;/P;) is the algebraic closure
of the field Q(Rz/P2).

Rl E— R2

l |

Rl/Pl —_— RQ/PQ

l |

Q(R1/P1) —— Q(R2/Py) —— Q(R/P)) —— F
O

PROPOSITION 3.2.20
Suppose that S is a proper multiplicative subset of an integral domain R. The
integral domain RS~! is a subring of the field Q(R) and we have RS~! =
R[S71].

ProrosITION 3.2.21
Suppose that A is an algebra over a field and let S be a proper multiplicative

subset. The ring AS~! is an algebra and the canonical mapping of the algebra
A into the algebra AS™! is a homomorphism of algebras.

THEOREM 3.2.6
Suppose that F is an algebraically closed field and let

f@) = (fi(z1,...,2n), .o, ful@1, ..., 20))

be an element of the space F[z1,...,z,]" that is algebraically independent over
the field F. The set f(F™) has nonempty Zariski interior.

Proof. The element f(z) is a transcendence basis of the field F(z) over the field
F since the transcendence degree of the field F(z) over the field F is n. There
exists an element g(x) of the set F[x] \ {0} such that the integral domain

1
Fle golf (w)]
is integral over the integral domain
Ff(e), — ]
go f(z)
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by Theorem since the field F(z) is algebraic over the field F(f(z)). We
show that the set f(F") contains the nonempty Zariski open set F" \ g~1(0).
Suppose that v is an arbitrary element of the set F* \ g=1(0). There exists a
unique homomorphism of algebras

The homomorphism extends uniquely to a homomorphism of algebras

1 1 1

gor@) F go @ 9w

The homomorphism extends to a homomorphism of algebras

F[f (=),

1
Flo oo r@

by Theorem since the field F is algebraically closed. We have v = f(n). O

]%]F, T W

COROLLARY 3.2.2
Suppose that V is a finite dimensional vector space over an algebraically closed
field of characteristic 0 and let f be an element of the space S(V*) ® V such
that we have det f' # 0. The set f(V) has nonempty Zariski interior.

Proof. By Proposition [3.1.20] O

PROPOSITION 3.2.22
Any vector space over an infinite field is not a finite union of proper subspaces.

3.3 Cartan Subalgebras

ProrosiTiON 3.3.1
Suppose that f is a homomorphism of a Lie algebra into an algebra. We have

(f(@) = (u+v)) f((adz — p)"y)
= f((adz — )" 'y) + f((adz — p)"y) (f (z) — v)

for any elements  and y of the Lie algebra and for any scalars p and v for any
nonnegative integer n.

Proof. We have
(f(@) = (u+v))f ((adx—u)"y)

f(z) ((adfv* "y) — (p+v)f((adz — p)"y)
= f((ad p)" y) + f((adz — p)"y) (f(z) —v). O
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PROPOSITION 3.3.2
Suppose that f is a homomorphism of a Lie algebra into an algebra. We have

n

(@) = 40)" 1) =3 () £z = 0#) (1) = )"

k=0

for any elements x and y of the Lie algebra and for any scalars p and v for any
nonnegative integer n.

Proof. The proof is by induction on the nonnegative integer n. Suppose that
we have n > 0. We have

(F(@) = (n+1))"f()
= (f@) = (m+w) Y
k=

0

<n N 1) F((adx — p)*y) (f(x) —v)" "
(n k ) (F(de =" y) (@) )" 4 F((ade = w)y) (F@) —0)"")

n—1 1
=
k=0
=3 (") F((adz — ) (F(2) — )" " O
kz_:()(’“) ( m"y)( )

ProrosiTION 3.3.3
Suppose that p is a representation of a nilpotent Lie algebra.

nh_)rrgo ker (p(x) — V)n (3.4)

is an invariant subspace for the representation p for any element = of the Lie
algebra and for any scalar v.

Proof. Suppose that v is an arbitrary element of the subspace (3.4). We have

n

(p(x) = v)"p(y)o = (Z)p((ad 2)*y) (p(x) = v)" o =0

k=0

eventually for any element y of the Lie algabra since we have (adz)® = 0
eventually. O

DEFINITION 3.3.1

A one dimensional representation p of a Lie algebra is called a weight of a
representation p if the subspace

() lim ker(p(z) — p(x))" # {0}

ProroOSITION 3.3.4

Suppose that z is a linear mapping on a finite dimensional vector space V' over
an algebraically closed field F. We have

V= @nlggo ker(z — v)™.
velF
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DEFINITION 3.3.2
A representation of a Lie algebra on a nontrivial vector space V is said to be
indecomposable if there do not exist nontrivial invariant subspaces V; and V5
such that we have V =V; & V5.

ProrosiTION 3.3.5
Suppose that p is a finite dimensional indecomposable representation of a nilpo-
tent Lie algebra over an algebraically closed field of characteristic 0. There
exists a unique weight of the representation p.

Proof. There exists a unique scalar p(x) such that the invariant subspace
lim_ker (p(z) — p(2))" # {0}

for any element x of the Lie algebra. It is sufficient to show that the functional u
is a homomorphism of Lie algebras. The functional p is a homomorphism of Lie
algebras since each p(x) — p(x) is strictly upper triangular by Lie’s theorem. O

THEOREM 3.3.1
Suppose that p is a representation of a nilpotent Lie algebra over an algebraically
closed field of characteristic 0 on a finite dimensional vector space V. We have

V= @ ﬂnh_{glo ker (p(x) — ,u(a:))n
p is a weight =

ProrosIiTION 3.3.6
The normaliser of a Lie subalgebra is a Lie subalgebra.

PROPOSITION 3.3.7
A Lie subalgebra is an ideal of its normaliser.

DEFINITION 3.3.3
A nilpotent Lie subalgebra that contains the normaliser of the Lie subalgebra
is called a Cartan subalgebra.

DEFINITION 3.3.4
Suppose that x is an element of a Lie algebra g. We define a subspace

g2 = lim ker(adx — v)"
n—oo

for any scalar v.

PROPOSITION 3.3.8
Suppose that = is an element of a Lie algebra g. The set [gﬁ, gyz] is contained
in the subspace g, for any scalars 1 and v.

Proof. Suppose that (y,z) is an arbitrary element of the set g x g7. We have

(adz — (n+v))"[y, 2] = Z (Z) [(adz — p)¥y, (adz — )" *2] =0

k=0

eventually. O
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PRrROPOSITION 3.3.9
An element x of a Lie algebra ¢ belongs to the Lie subalgebra g

ProrosiTiON 3.3.10
Suppose that x is an element of a Lie algebra g. The Lie subalgebra g§ contains
the normaliser of the Lie subalgebra gg.

Proof. Suppose that y is an element of the normaliser of the Lie subalgebra g5 .
The element (ad z)(y) belongs to the Lie subalgebra ¢3. The element y belongs
to the Lie subalgebra g§. O

DEFINITION 3.3.5
Suppose that ¢ is a finite dimensional Lie algebra over an algebraically closed
field. We define rank ¢ = min, dim g§.

DEFINITION 3.3.6
An element x of a finite dimensional Lie algebra g over an algebraically closed
field is said to be regular if we have dim g = rank g.

ProproSITION 3.3.11
The set of regular elements of a finite dimensional Lie algebra over an alge-
braically closed field is a nonempty Zariski open set.

Proof. There exists a unique element f of the set S(g*) \ {0} such that the
characteristic polynomial of the derivation ad z is given by

det(t —adz) = t4™9 4 ... 4 f(g)ranks

for any element x of the Lie algebra ¢g. The set of regular elements is the
nonempty Zariski open set g\ f~1(0). O

THEOREM 3.3.2
Suppose that ¢ is a finite dimensional Lie algebra over an algebraically closed
field and let = be its regular element. The Lie subalgebra g§ is a Cartan subal-
gebra.

Proof. Suppose that x is an arbitrary element of the Lie algebra g. The Zariski
open set

Up = {m/ € gy : adgg 2’ is not nilpotent }

is empty if and only if the Lie subalgebra g¢§ is nilpotent by Engel’s theorem.
The Zariski open set

Ug- = ﬂ {x’ € g5 s adge 2’ is regular}

velFx

is not empty since it contains the element x. It is sufficient to show that the
element 2 is not regular if the Lie subalgebra g is not nilpotent. The nonempty
Zariski open sets Uy and U~ have a point in common by Proposition and
Proposition We have rank g < dim gg. O
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COROLLARY 3.3.1
Any finite dimensional Lie algebra over an algebraically closed field has a Cartan
subalgebra.

PROPOSITION 3.3.12
Suppose that  and y are nilpotent elements of an algebra with identity over
a field of characteristic 0 such that we have [z,y] = 0. The element x + y is
nilpotent and we have exp(z + y) = (exp z)(expy).

Proof. There exists a nonnegative integer m such that we have 2™ +! = ym+! =
0 since the elements x and y are nilpotent. We have

2m 1 n n
exp(z +y) = o Z (k) akyn=k

n=0 k=0

B 2m. n ok Yk

- ! (n— k)
m=0 k=0 (n = k!
m n ™ ' n

£ Y

=> ) > = = (expa)(expy)

n=0 n=0
since we have [z,y] = 0. O

PRrROPOSITION 3.3.13
Suppose that = is a nilpotent elements of an algebra with identity over a field
of characteristic 0. The element exp x is invertible.

Proof. We have (expz)~! = exp(—z). O

ProrosiTiON 3.3.14
Suppose that D is a nilpotent derivation of a Lie algebra over a field of charac-
teristic 0. The element exp D is an automorphism of the Lie algebra.

Proof. 1t is sufficient to show that the element exp D is a homomorphism of Lie
algebras. We write m for the Lie bracket. We have

Dom=mo(D®1+1®D)
since we have

Dom(z®y)=m(Dzx®y+x & Dy)
=mo(D®1+1®D)(z®vy)

for any elements z and y of the Lie algebra. We have

exp(D®1+1® D) = (expD) ® (exp D)
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since the elements D ® 1 and 1 ® D are nilpotent and commuting. We have

oo

(expD)om = Z

n=0

D" om

n!

o0

7ZmO(D®1+1®D)”
B n!

n=0

=moexp(D®1+1®D)=mo(expD) R (exp D). O

DEFINITION 3.3.7
We write Der g for the set of derivations of a Lie algebra g.

PRrROPOSITION 3.3.15
Suppose that ¢ is a Lie algebra. The set Der g is a Lie subalgebra of the Lie
algebra hom g¢.

Proof. Suppose that Dy and Dy are derivations of the Lie algebra g. We have

[Dy, Ds][z,y] = (Dy o Dy — Dy 0 Dy)[z, ]
= D1 ([D2,y] + [, D2y]) — Da([D1,y] + [, D1y])
= [[D1, DoJz,y] + [2,[Dy, Daly]

for any elements z and y of the Lie algebra g. O

DEFINITION 3.3.8
Suppose that ¢ is a Lie algebra. The Lie algebra Der g is called the derivation
algebra of the Lie algebra g.

ProposITION 3.3.16
The adjoint representation of a Lie algebra ¢ is a homomorphism of Lie algebras
of the Lie algebra g into the derivation algebra Der g.

DEFINITION 3.3.9
The group of inner automorphisms of a Lie algebra over a field of characteristic
0 is the group generated by the set

{exp(ad x) : z is an element of the Lie group

such that the derivation ad x is nilpotent }

DEFINITION 3.3.10
We write Inn g for the group of inner automorphisms of a Lie algebra g.

ProrosiTION 3.3.17
A proper Lie subalgebra of a nilpotent Lie algebra is a proper ideal of the
normaliser of the Lie subalgebra.

ProrosiTION 3.3.18
A Cartan subalgebra of a Lie algebra is a maximal nilpotent Lie subalgebra.
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ProprosITION 3.3.19
Suppose that ¢ is a finite dimensional Lie algebra over an algebraically closed
field and let x be its regular element contained in a Cartan subalgebra h. We
have h = g§.

Proof. The Cartan subalgebra h is contained in the Cartan subalgebra g by
Engel’s theorem. We have h = g§ by Proposition |3.3.18 O

ProrosiTION 3.3.20
Suppose that h is a nilpotent Lie subalgebra of a finite dimensional Lie algebra
g over an algebraically closed field of characteristic 0.

1. We have the weight space decomposition

g = @ 937 ﬂ Iy Inw) = 7}1—>120 ker(ad z — ,u(m))n
pne(h/Dh)* r€h

2. The set [g[j, gl’}] is contained in the subspace g}} ., for any one dimensional
representations p and v.

3. The nilpotent Lie algebra h is a Lie subalgebra of the Lie algebra g7
Proof. 3. By Engel’s theorem. O

ProproOSITION 3.3.21
Suppose that h is a Cartan subalgebra of a finite dimensional Lie algebra g over
an algebraically closed field of characteristic 0. We have h = g

q _ f{adpzx *
W T= 0 adgw

for any element = of the Cartan subalgebra h. The element ad n/p IS nilpo-
tent for any element x of the Cartan subalgebra h since the element ad, n T is
nilpotent. Suppose that the Cartan subalgebra h is a proper Lie subalgebra of
the Lie algebra g'. We have

Proof. We have

[ kerad,y , = # {0}

xzEh
by Engel’s theorem. This is a contradiction. O

PROPOSITION 3.3.22
Suppose that h is a nilpotent Lie subalgebra of a finite dimensional Lie algebra
g over an algebraically closed field of characteristic 0. We have

h h
g#l 1 g,u2

if we have puq + po # 0.
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Proof. Suppose that (x1,x2) is an arbitrary element of the space g[}l X g[fz. We
have B(x1,x2) = 0 since the space (adx)(ad22)g) is contained in the space
g[}+m+m for any weight pu. O

COROLLARY 3.3.2
Suppose that h is a nilpotent Lie subalgebra of a finite dimensional semisimple
Lie algebra ¢ over an algebraically closed field of characteristic 0. The restriction
of the Killing form to the space gf x g{ is nondegenerate.

COROLLARY 3.3.3
Suppose that h is a Cartan subalgebra of a finite dimensional semisimple Lie
algebra over an algebraically closed field of characteristic 0. The restriction of
the Killing form to the space h x h is nondegenerate.

THEOREM 3.3.3
Suppose that h is a Cartan subalgebra of a finite dimensional Lie algebra g over
an algebraically closed field of characteristic 0. The set (Inn ¢)(h) has nonempty
Zariski interior.

Proof. Suppose that v is a nonzero weight and let x be an element of the space
gl We show that the derivation adz is nilpotent. We have (adz)"g/* = {0}

eventually for any weight p since we have g, , = {0} eventually.
We write

= B

1 is a nonzero weight

and let (x1)7_, be a basis of the subspace h' contained in the set

U 9.

4 is a nonzero weight

We define an element f of the space S(g*) ® g by
flxo+ Z vpxy) = exp(—vyadzy) - - - exp(—vp ad ) (o)

k=1

for any element (g, v) of the set h x F™. The set (Inn ¢g)(h) contains the image
of the mapping f. Suppose that x is an element of the Cartan subalgebra h.

We have
@ = (5 )
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since we have

15 7n) =~ (8), 0 e

k=1

=xy— Z vi(ad zg)(x)
k=1

=1x0 P (ad a:)(z VpTy)

k=1

_ 1 0 o
N0 adz) \XYp_, vk

for any element xo © > ,_, vxxi of the Lie algebra g = h @ ht. We have
det f'(x) # 0 if and only if the element 2 belongs to the set

h\ U ker 4. (3.5)

1 is a nonzero weight

The set (3.5) is not empty by Proposition 3.2.22L The image of the mapping f
has nonempty Zariski interior by Corollary [3.2.2 O

THEOREM 3.3.4 (Chevalley)
The group of inner automorphisms of a finite dimensional Lie algebra over an
algebraically closed field of characteristic 0 acts on the set of Cartan subalgebras
transitively.

Proof. The Lie algebra g has a Cartan subalgebra by Corollary Suppose
that h; and hy are arbitrary Cartan subalgebras of the Lie algebra g. The set

(Inn g)(h1) N { regular elements of the Lie algebra g } N (Inn g)(hs)

is not empty by Proposition [3:3.11] and Theorem [3.3.3] O

PROPOSITION 3.3.23
E| Suppose that h is an ideal of a finite dimensional nilpotent Lie algebra g. We
have h = {0} if we have h Nkerad, = {0}.

PRrROPOSITION 3.3.24
Any finite dimensional semisimple Lie algebra over an algebraically closed field
of characteristic 0 has a maximal toral subalgebra.

ProrosiTION 3.3.25
Suppose that x = S + N is a Jordan decomposition of a linear mapping on
a finite dimensional vector space over an algebraically closed field. We have
ker x = ker S Nker N.

Proof. By Corollary O
1B, Lemma 3.3].
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PROPOSITION 3.3.26
Suppose that h is a toral subalgebra of a finite dimensional semisimple Lie
algebra g over an algebraically closed field of characteristic 0. We have the
weight space decomposition

9=p g} gt =) 9 ey = ker(ad 2 — p(z)).
neh* z€h

THEOREM 3.3.5
EI A Lie subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is Cartan if and only if it is maximal
toral.

COROLLARY 3.3.4
A Lie subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is Cartan if and only if it is toral and
maximal abelian.

COROLLARY 3.3.5
Suppose that h is a Cartan subalgebra of a finite dimensional semisimple Lie
algebra g over an algebraically closed field of characteristic 0.

1. We have the weight space decomposition

g=he P o gu =[] ker(ad z — p(x)).

neh*\{0} x€h

2. We have

h=go= ﬂ ker(ad x).
z€h

3.4 Lie Algebras M(2,F)Nkertr

DEFINITION 3.4.1
Suppose that F is a field and let (e™)2_,; be the dual basis of the canonical basis
(en)2_; of the vector space F¢. We write €] = ¢; ® e/ for any (i, j).

ProrosIiTION 3.4.1
Suppose that I is a field and let d be a positive integer. The mapping

d d—1 d—1
h— Z(d—Qn—i— er, xz+— Z(d—n)efﬁl, Y Znezﬂ (3.6)
n=1 n=1 n=1

into the Lie algebra M (d,F) defines a representation of the Lie algebra

M(2,F) Nkertr.

2[3| Proposition 8.2].
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REMARK 3.4.1
‘We have

[hvx] = 21[7 [huy] = _2ya [xuy] = h.
Proof. We define

d d—1 d—1

)= (d=2n+1)er, flx)= (d—n)eptt, fly)=> ner,,.

n=1 n=1 n=1

It is sufficient to show that we have

[f(h), f(@)] =2f(2),  [f(R),f(W)] ==2f(y), [f),f()] = f(R).

‘We have
d

> (d—2n+1)e
S a1
(d—2n41)(d —n)emtt — Z(d—Zn— 1)(d —n)ert?

n=1

n+1i|

||M&

=

| H
Mg —

3
a
‘ Ll

1

(d—n)ep™ =2f(a).

1

3
Il

We have
d
)= [0 mZnenH}
d I d—1
:Zd 2n — 1)ney, Z(d72n+1)neﬁ+1
n=1 n=1
=-2 Z nen-i—l = _2f )
We have

[F@), f@)] =[S (d = nept? Z nefy|

i
=Y (d—mn(ei —entt)

. a
= Z(d —n)ne; — Z(d —n+1)(n—1e,
d
=Y (d—2n+1)ep = f(h) L
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PROPOSITION 3.4.2
The representations (3.6]) are irreducible if the field F is of characteristic 0.

REMARK 3.4.2
Suppose that F is a field. The mapping

h — —h, T — vy, Yy
defines an automorphism of the Lie algebra M (2,F) Nker tr.

PROPOSITION 3.4.3
Suppose that F is a field and let f be a homomorphism of the Lie algebra
M(2,F) Nker tr into an algebra over the field F. We have

[f(h), f(2)"] = 2nf(z)", [f(h), fy)"] = —2nf(y)"
for any positive integer n.

Proof. The proof is by induction on the positive integer n. Suppose that we
have n > 1. We have

[£(h), f(2)"] = [f(R), f(@)" '] () + f(a)" 7 [f(R), f(2)] = 2nf(2)".
By the above remark we have [f(—h), f(y)"] = 2nf(y)". O

PROPOSITION 3.4.4
Suppose that F is a field and let f be a homomorphism of the Lie algebra
M(2,F) Nker tr into an algebra with identity over the field F. We have

[f(@), f)"] = nf(y)" ' f(h) —n(n = 1) f(y)"
=nf(h)f(y)" " +nln—1)f(y)""
and we have
[f(y), f(@)"] = —nf(h) f(2)" " +n(n —1)f(z)""
= —nf(x)""' f(h) = n(n —1)f(2)""!
for any positive integer n.

Proof. The proof is by induction on the positive integer n. Suppose that we
have n > 1. We have

[f(@), f)"] = [£(@), F)" " f(w) + F() " f(h).
We have
[f(@), f)" ] = (0= 1) ()" 2 f(h) — (n = 1)(n —2) f(y)"
by the induction hypothesis. We have

F)" 2R fy) = F@)" (R + fy)" 2 (R), f(y)]
= )" " f(h) —2f ()"

We have [£(x), f(u)"] =nf(s)"~" F(h) = nln — 1) f(y)" " o
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PRrROPOSITION 3.4.5

Suppose that F is an algebraically closed field of characteristic 0 and let f
be a finite dimensional irreducible representation of the Lie algebra M (2,F) N
ker tr. An eigenvector of the endomorphism f(h) contained in the kernel of the
endomorphism f(x) is called a primitive vector of the irreducible representation
f. There exists a primitive vector of the irreducible representation f.

Proof. The endomorphism f(h) has an eigenvector £ with eigenvalue v since the
field F is algebraically closed. We have

FI)F(@)"€ = vf(@)"e + [F(h), f(2)"]¢
— (v + 20)f(2)"¢

for any nonnegative integer n. We have eventually f(x)"& = 0 since the field F
is of characteristic 0. We define

n=min{neN: f(z)"{ =0}.

The vector f(x)" 1€ is a primitive vector of the irreducible representation f. [

THEOREM 3.4.1

Suppose that F is an algebraically closed field of characteristic 0. A finite dimen-
sional irreducible representation of the Lie algebra M (2, F) Nker tr is equivalent
to the irreducible representation (3.6)).

Proof. There exists a primitive vector e of the irreducible representation f by
the previous proposition. We define

€n =

1 n—1
mf(y) €

for any positive integer n. U

3.5 Root Systems

ProprosITION 3.5.1

Suppose that F is a field.
1. We have

{ monic polynomials } ~ { nonzero ideals of F[z] }, f(z) — Flz]f(z).

2. We have

{ monic irreducible polynomials } ~ { nonzero prime ideals of F[z] }

= { maximal ideals of F[z] }.

PROPOSITION 3.5.2

Suppose that F is an algebraically closed field.
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1. Suppose that f(z) is an element of F[z]. We have

f(z) is an irreducible polynomial < deg f(x) = 1.

2. We have

F ~ { monic irreducible polynomials }, Vi T — .

ProrosITION 3.5.3
Suppose that R is a commutative ring with identity.

1. A unital module over the algebra R[z] is a unital module over the ring R.

2. Suppose that M is a unital module over the ring R. We have

hom M ~ { compatible unital module structures

over the algebra R[z] on the unital module M }.

ProprosITION 3.5.4
Suppose that = and y are elements of a commutative ring with identity. We

have (x)(y) = (29).

PROPOSITION 3.5.5
Suppose that = and y are elements of an integral domain. We have (z) = (y) if
and only if we have R*x = R*y.

DEFINITION 3.5.1
An element z of a commutative ring with identity is called a prime element if
the principal ideal (z) is a nonzero prime ideal.

THEOREM 3.5.1

We have

. i ideal
{ nonzero ideals } _ Z?{ nonzero prime ideals }

for a principal ideal domain.
DEFINITION 3.5.2
Suppose that M is a unital module over an integral domain R. We define

t(M)=Mn {x : the element 0 is contained in the set (R\ {0})x }

PRrROPOSITION 3.5.6
Suppose that R is a principal ideal domain and let

be an element of the set R?\ {0}. There exists a greatest common divisor d
of the set {ry,r2} by Proposition 2.3.5] There exists a basis (e1,e2) of the free
module R? such that we have
1 o
(T2> = d€1.
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€1 = dil <:;> .

There exists an element e of the free module R? such that we have

Proof. We define

det(el, 62) =1.

The pair (e1,e2) is a basis of the free module R? and we have

<’"1) —de;. O
]
THEOREM 3.5.2

Suppose that R is a principal ideal domain and let M be a submodule of a
free module R™. There exists a unique decreasing sequence (Rj)}; of nonzero
ideals such that there exists a basis (ex)}_; of the free module R"™ with M =

@;Cn:l Rkek.

Proof. The proof is by induction on n.
Suppose that we have n > 0. We may assume that we have M # {0}. We
define an ideal

Ry ((ek)zzl) = {1"1 ER:MnN(re + @Rek) is not empty}
k=2

for a basis (ex)7_, of the module R”. The set
{Rl((ek)Z:l) : (er)r—; is a basis of the module R" } (3.7

has a maximal element

(7‘1) = Rl = Rl(el,...,en) 7& {0}

since the domain R is Noetherian.
There exists an element (rj)7_, of the module R"~! such that the element

rie; +1r2€2 4+ 1rpey

belongs to the submodule M.

We proceed to show that the set {7 }}_, is contained in the ideal (r1). There
exists a greatest common divisor r of the set {ry,r2} by Propositionm There
exists an element P of the group M (2, R)* such that we have

rie1 + raez = r(Prier + Paes)
by Proposition [3.5.6 The ideal (r) is contained in the ideal

Rl((el,eg)P, €3, .. .,en)
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and we have (r1) = (r) since the ideal (1) is a maximal element of the set (3.7).
We may assume that the module Rje; is contained in the module M since
we have

T2 Tn
Ri=Rilet+ —ex+---+ —epn,€2,...,6n |.
1 1

We have .
M = Ryey & (M N @D Rey).
k=2
We may assume that there exists a decreasing sequence (Ry)jr, of nonzero

ideals such that we have M = @,_, Rier by the induction hypothesis. The
sequence (Ry)7; is decreasing. O

COROLLARY 3.5.1

Suppose that R is a principal ideal domain. A submodule of a free module R™
is a free module whose rank is less than n.

THEOREM 3.5.3

Suppose that M is a finitely generated unital module over a principal ideal
domain R.

1. There exists a unique decreasing sequence (R )7, of nonzero proper ideals
such that we have

M =EPR/R, &R
k=1

2. We have -
t(M) = D R/Ry.
k=1

THEOREM 3.5.4

Suppose that M is a finitely generated unital module over a principal ideal
domain R.

1. There exists a unique element (m,n) of the set

Z?({ nonzero prime ideals } xN) « ZJr

such that we have

P

n=1

2. We have

nhﬁrr;oM N {I : Pz = {0} } = @(R/P")W(Pwn)

for VP.
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3. We have
t(M) =P lim Mn{x: P"w={0}}
P

_ @ (R/Pn)m(P,n)

n=1

Proof. We have

nILH;OM N {z : Pz = {0} } = @(R/p”)m(l’an)

for VP. We may assume that

M= éé R/P™*
k=1
for some 1 < mny < --- < ny,. The proof is by induction on
min{n: P"M = {0} }.
Suppose that we have

min{n: P"M = {0} } > 0.

We have
PM = Rr/Pmt
k=1
The module M/PM = (R/P)™ is a vector space over a field R/P. O

THEOREM 3.5.5
Suppose that F is an algebraically closed field and let V' be a unital module over
the algebra F[x] whose dimension over the field F is finite.

(FxN)

1. There exists a unique element m of the set Z? such that we have

- OB(wr)
2. We have

Tim ker(s — v)" = é( M]gx_]yw )m(u,n)

for Vv.
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3. The finite sequence
(=) ")

— over the field F and we have

Flz](z —v)

is a basis of the vector space

1

for V(v,n).
THEOREM 3.5.6 (Hamilton-Cayley)

Suppose that x is a linear mapping on a finite dimensional vector space over a
field and let f be its characteristic polynomial. We have f(z) = 0.

Proof. We may assume that the field is algebraically closed and we have

n

DEFINITION 3.5.3
Suppose that F is a field of characteristic 0 and let H be a finite dimensional
vector space over the field F. Suppose that ¢ is a linear mapping on the vector
space H and let & be an element of the set H \ {0}. The linear mapping o is
called a reflection along the element ¢ if we have

codimker(c — 1) =1, (c+1)(&) =0.

ProPoOSITION 3.5.7
Suppose that the linear mapping o is a reflection along the element £. We have

H =ker(c — 1) @ F¢
and we have 02 = 1.

PROPOSITION 3.5.8
Suppose that F is a field of characteristic 0 and let H be a finite dimensional
vector space over the field F. Suppose that A is a finite subset of the space H
with H = span A and let £ be an element of the set H \ {0}. There exists at
most one reflection o along the element £ with o¢(A) = A.
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Proof. Suppose that o1 and o9 are reflections along the element £ with o1 (A) =
o2(A) = A and let 0 = 01 0 09. We have o™ = 1 for some positive integer n
since we have o(A) = A. The minimal polynomial f(x) of the linear mapping
o does not have a multiple root since it divides the polynomial 2" — 1. We have
f(x) = 2 — 1 since the polynomial (x — 1)3™ is the characteristic polynomial
of the linear mapping o. O

DEFINITION 3.5.4
Suppose that F is a field of characteristic 0 and let H be a finite dimensional
vector space over the field F. A finite subset A of the set H \ {0} is called a
root system if it satisfies the following.

1. We have H = span A.

2. There exists a reflection o¢ along the element ¢ with o¢(A) = A for any
element & of the set A.

3. The element n — o¢(n) belongs to the set Z¢ for any element (£,7) of the
set A2,

PROPOSITION 3.5.9
Suppose that £ is an element of a root system A. There exists a unique element
&* of the vector space (span A)* such that we have o =1 - ® £*.

PROPOSITION 3.5.10
Suppose that £ is an element of a root system. We have £*(§) = 2.

ProOPOSITION 3.5.11
Suppose that £ and 7 are elements of a root system. The element £*(n) is an
integer.

PROPOSITION 3.5.12
Suppose that £ is an element of a root system A. We have

AN (&) = {££}, {ig,ig}, {x¢, +2¢}.

Proof. Suppose that x is a scalar such that the element £ belongs to the root
system A. The scalars 2z and 2z~ are integers since the element

20¢ = a6 — o¢(af)
belongs to the set Z¢. We have
x = :i:;:l:l,:t?. O

DEFINITION 3.5.5
A root system A is said to be reduced if we have

An(g) = {+¢}

for any element £ of the root system A.
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DEFINITION 3.5.6
Suppose that A is a root system. The subgroup of the finite group

(hom span A)* N { permutations of the root system A }
generated by the set
{G'E : £ is an element of the root system A }
is called the Weyl group and denoted by W (A).

PrOPOSITION 3.5.13
Suppose that A is a real root system. There exists an inner product on the real
vector space span A such that we have

lo@©)]| = liel
for any element (o, &) of the set W(A) x span A.

Proof. Suppose that

(span A)? — R, (& n) = (&n)
is an arbitrary inner product on the real vector space span A. The mapping
!/
(spanA)? — R, Em = (Em= > (a(8),0m)
ceW(A)

is an inner product on the real vector space span A such that we have

(0(8).0(8)) = V(&)
for any element (o, &) of the set W(A) x span A. O

ProproSITION 3.5.14
Suppose that A is a real root system. We have

ey 2(6m) _ o 2(6m)
SO0 = e 7l =0 TS
for any elements (£,n) of the set A x span A.
Proof. We have
(& n) = (0¢(&), o¢(m))
= (=&n =& ) = —(&n) +EMIEN” O

PROPOSITION 3.5.15
Suppose that A is a real root system. The set

2
A" = {5* = ||§£|2 : £ is an element of the root system A}

is a real root system.
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Proof. The set A* is a finite subset of the set (span A)*\ {0}.
1. We have (span A)* = span A* by Proposition
2. Suppose that £ is an element of the root system A. The linear mapping
1-8®¢
is a reflection along the element £*. We have
(1-¢ ®6)(a%) = A*
since we have

(1= @0")(C) =n"(¢) = 0" (§)E"(C)
2(n,¢) _ 4(&m(& Q)

EENEELE
= 2oehd)
loc ()

for any element (7, () of the set A X span A.

3. The element
n"—oe (") = n"(§)E"
belongs to the set Z&* for any element (£,7) of the set A2 O

PROPOSITION 3.5.16
Suppose that A is a real root system.

1. Suppose that £ is an element of the root system A. We have £** = €.
2. We have #A = #A*.

PROPOSITION 3.5.17
Suppose that A is a reduced real root system. The real root system A* is
reduced.

ProrosITION 3.5.18

Suppose that V' is a finite dimensional vector space over a subfield of a field F.
We have (VQF)* =V*®F.

THEOREM 3.5.7
Suppose that A is a complex root system. We have span A = spanp A ® C and
the set A is a real root system.

Proof. We show that the set A is a real root system. Suppose that £ is an
element of the root system A. The real vector space spang A is invariant for the
real linear mapping o¢ since we have o¢(A) = A. We show that the restriction
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of the real linear mapping o¢ to the invariant subspace spany A is a reflection
along the element £. It is sufficient to show that
spang A

di =1
1m ker(oe — 1) Nspang A

Suppose that 7 is an element of the root system A. There exists a complex
number z such that the element 1 — z£ belongs to the set ker(og — 1) since we
have span A = ker(oe — 1) @ C€. The complex number z is real since we have
£*(n— 2€) = 0. The element 7 belongs to the set (ker(oe — 1) Nspang A) @ RE.

We show that we have span A = spany A ® C. There exists a complex linear
mapping f of the space spang A ® C onto the space span A with f(§£ ® z) = 2€
for each (&, z). It is sufficient to show that the dual mapping of the mapping f
is surjective. The dual mapping f* is surjective since we have f*(£*) = &* ® 1
for any element £ of the root system A and the set A* is a real root system. [J

PRroPOSITION 3.5.19

Any root system is a root system over any subfield.

ProroSITION 3.5.20

Any root system is a root system over any extension field.

PROPOSITION 3.5.21

Suppose that A is a real root system and let £ and 1 be elements of the root
system A such that we have RENRny = {0}. We have

w(© | € ) | arccos ASWW)”
0 0 -
R : €l =T
I
1| = el =
2 | 1 . ¢l = V2ln]
<2 | | T e=vam
e c ¢l = V3l
3] e =vam
provided that we have [n*(¢)| > |¢*(n)].

Proof. We have

o 4(¢,m)?
= S _ o193 0O
7O = Tepeqye

PROPOSITION 3.5.22

Suppose that A is a real root system and let £ and 1 be elements of the root
system A such that we have RE "Ry = {0}. The element & + 7 belongs to the
root system A provided that we have (£,7) < 0.
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Proof. We may assume that we have £*(n) = —1. The element

oe(n) == M§+n=¢,+n
belongs to the root system A. O

DEFINITION 3.5.7
A subset S of a root system A is called a basis if it satisfies the following.

1. The set S is a linear basis of the vector space span A.

2. The root system A is contained in the set

Y zgud T

£es £es

DEFINITION 3.5.8
Suppose that S is a basis of a root system A. We define

AT =37 EnA.
£es

ProrosITION 3.5.23
Suppose that S is a basis of a root system A. We have A = AT LJ (—A™).

PROPOSITION 3.5.24
Suppose that S is a subset of a real inner product space H such that we have
¢ = n provided that £ and 7 are elements of the subset S with (£,7) > 0.
Suppose that f is a linear functional on the real vector space H such that the
set f(S) is contained in the set (0,00). The subset S is linearly independent.

m—+n

Proof. Suppose that ((xk,gk))’:j”

1
with #{fk z:rln =m +n and let

is an element of the set ((0,00) x S)

m m-+n
E= me= Y, w
k=1 k=m+1
We have £ = 0 since we have
m  m+n
i=1 j=m-+1

We have m + n = 0 since we have

m—+n

0=F&)=> af&) = > zxf(&) O
k=1

k=m+1
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PROPOSITION 3.5.25
Suppose that A is a real root system. There exists a linear functional f on the
space span A such that the set f(A) does not contain the element 0.

DEFINITION 3.5.9
Suppose that A is a real root system and let f be a linear functional on the
space span A such that the set f(A) does not contain the element 0. We define

Af = f7H(0,00)) N A, Sp=AF\ (AT +AF).

PROPOSITION 3.5.26
Suppose that A is a real root system and let f be a linear functional on the
space span A such that the set f(A) does not contain the element 0. We have
A= A;f L (fA;[).

PROPOSITION 3.5.27
Suppose that A is a real root system and let f be a linear functional on the real
vector space span A such that the set f(A) does not contain the element 0. We
have £ = n provided that £ and 7 are elements of the set Sy with (£,7) > 0.

Proof. Suppose that we have R = Rn. We have £ = n by Proposition [3.5.12
Suppose that we have RE Ry = {0}. The element ¢ = £ — 1 belongs to the set
A\ A}" by Proposition |3.5.22| This is a contradiction. O

PROPOSITION 3.5.28
Suppose that A is a real root system and let f be a linear functional on the
real vector space span A such that the set f(A) does not contain the element 0.
The set S is linearly independent.

Proof. By Proposition and Proposition O

THEOREM 3.5.8
Suppose that A is a real root system and let f be a linear functional on the
real vector space span A such that the set f(A) does not contain the element 0.
The set Sy is a basis of the real root system A and we have

Af =Y 7 EnA
£esy

Proof. We show that the set A}' is contained in the set
S 2.
EESf

The proof is by induction on the number f(£) > 0. Suppose that & is an element
of the set A}' and we have

f(§) = min f(¢).

H
2N
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The element £ belongs to the set Sy. Suppose that £ is an element of the set
A;{ and we have

f(§) > min f(&).

+
cent

We may assume that the element ¢ belongs to the set A}" + A'f". The element
& belongs to the set
S 2.

fESf
by the induction hypothesis. O
COROLLARY 3.5.2
Any real root system has a basis.
Proof. By Proposition [3.5.25 O

PROPOSITION 3.5.29
Suppose that S is a basis of a real root system A. There exists a linear functional
f on the real vector space span A such that the set f(S) is contained in the set

{1}.

Proof. We define n = dimspan A. Suppose that {5k}Z:1 is the dual basis of
the linear basis S and let .
oy
k=1

The set f(S) is contained in the set {1}. O

PRrROPOSITION 3.5.30
Suppose that S is a basis of a real root system A and let f be a linear functional
on the real vector space span A such that the set f(S) is contained in the set
(0,00). We have the following.

1. The set f(A) does not contain the element 0.
2. We have AT = A}' and we have S = S;.

Proof. The set AT is contained in the set Aj{ since the basis S is contained in
the set A}". Suppose that £ is an element of the set A}" \ A*. The element ¢
belongs to the set —A7} since we have A = ATU(=A"). This is a contradiction
since we have A = A}' U (—A}'). We have AT = A}'. The basis S is contained

in the set AT\ (A" + AT). The basis S is contained in the basis Sy since we
have A* = AT. We have S = Sj. O

ProprosITION 3.5.31
Suppose that S is a basis of a real root system A. We have S = AT\ (AT +AT).

Proof. There exists a linear functional f on the real vector space span A such
that the set f(S) is contained in the set {1} by Proposition [3.5.29] We have
At = A}' and we have S =S¢ by Proposition |3.5.30 O
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PROPOSITION 3.5.32
Suppose that S is a basis of a real root system A. We have £ = 7 provided that
¢ and 7 are elements of the basis S with (&, 1) > 0.

Proof. There exists a linear functional f on the real vector space span A such
that the set f(S) is contained in the set {1} by Proposition We have
S = S by Proposition[3.5.30} We have & = 7 provided that £ and 7 are elements
of the basis S with (£,7) > 0 by Proposition O

PROPOSITION 3.5.33
Suppose that A is a real root system. We have

{ bases of the real root system A }
= { Sy : f is a linear functional on the real vector space span A

such that the set f(A) does not contain the element 0 }.

PRrROPOSITION 3.5.34
Suppose that S is a basis of a real root system A and let £ be an element of the
set AT. There exists a finite sequence {gk}Z:1 of elements of the basis S such
that the elements

§1,60+ &, ot + 6 =€
belong to the set AT,

Proof. There exists a linear functional f on the real vector space span A such
that the set f(S) is contained in the set {1} by Proposition The proof
is by induction on the positive integer f(£). Suppose that we have f(£) = 1.
The element & = £ belongs to the basis S. Suppose that we have f(£) > 1.
The element £ does not belong to the basis S and the set S U {£} is linearly
dependent. There exists an element £’ of the real vector space span A such
that the element £ — & belongs to the basis S and we have (£,€ — &) > 0 by

Proposition and Proposition We may assume that the element &
does not belong to the set R(¢ — ¢’). We have f(¢') = f(§) —1 > 0 and the

element ¢’ belongs to the set AT by Proposition [3.5.22] There exists a finite
sequence {ék}zzl of elements of the basis S such that the elements

51)51 +§2a"'a§1+"'+£n:£/
belong to the set A™ by the induction hypothesis. We have
Gt bt (E-€)=¢ O

ProposITION 3.5.35
Suppose that S is a basis of a reduced real root system A. We have

o (AT\{g}) = AT\ {¢}

for any element £ of the basis S.
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Proof. Suppose that we have S = {fl7 e ,§n,1,§} and let {51, Y Lot 5} be
its dual basis. Suppose that 7 is an arbitrary element of the set AT\ {¢}. We
have Zz;ll §%(n) > 0 since the real root system A is reduced. The element
oe(n) belongs to the set AT\ {{} since we have

n—1

Z_: 5 (oe(n)) = 2 F(n— € me) = " m) >0. O
k=1 k=1 k=1

PROPOSITION 3.5.36
Suppose that S is a basis of a reduced real root system A. We have

af(zy) =y At -2

for any element & of the basis S.

DEFINITION 3.5.10
A subset C of a real vector space is called a cone if (0,00)C = C.

PROPOSITION 3.5.37
Suppose that S is a subset of a real vector space. There exists the convex cone
generated by the subset S.

PROPOSITION 3.5.38
Suppose that ({)7_; is a finite sequence of a real vector space. The convex
cone generated by the set {{k}zzl is given by

{ Zxkfk : (xk)p—; is an element of the set [0,00)™ \ {0} }
k=1

ProrosiTioN 3.5.39
Suppose that (£;)7_; is an independent finite sequence of a real vector space
and let C be the convex cone generated by the set {Ek}zzl. We have

C = |_| (0,00)& U U { Zyknk : (yg)pe, is an element of the set (0, 00)™
k=1 m=2 k=1

and (ng)j—, is an independent finite sequence of the convex cone C }

ProrosiTION 3.5.40
Suppose that S is a basis of a reduced real root system A. The linear basis

S* = {f* : £ is an element of the basis S}

is a basis of the reduced real root system A*.

Proof. There exists a linear functional f on the real vector space span A =
span A* such that the set f(.5) is contained in the set (0,00) by Proposition
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3.5.29] We write C' for the convex cone generated by the basis S. The convex
cone C is generated by the set AT. We have

(A*)}r = (AT)* ={&" : ¢ is an element of the set AT }.
The convex cone C' is generated by the basis
Sp=(ANF\ ((AYF +(A"F)
= (AT \ ((AT)" +(AaT))
since it is generated by the set (A*)}' = (A*)*. We have
{ (0,00)¢" : £ is an element of the linear basis S* }
= {(0,00)¢" : £ is an element of the basis S} }

since we have

| ] (0,00)¢" = | |(0,00)¢ = | | (0,00)¢"

grest ges £+€5}
by Proposition [3.5.39L We have 5* = S7%. O

DEFINITION 3.5.11
Suppose that S is a basis of a reduced real root system A. The subgroup of the
Weyl group W(A) generated by the set

{ o : € is an element of the basis S }
is denoted by W (S).

LEMMA 3.5.1
Suppose that S is a basis of a reduced real root system A and let f be a linear
functional on the real vector space span A. There exists an element o of the
subgroup W (S) such that we have

(foo)(§) =0
for any element & of the basis S.

Proof. There exists an element o of the subgroup W (S) such that we have

(fen)(3oat)=(ren(dat)

for any element 7 of the subgroup W (S). We have
(foo)(§) =0

for any element £ of the basis S since we have

(foo)(3oat) = (foroag (D art)
= (foo) (D a%) =2(fo0)(©)
by Proposition [3.5.36 O
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COROLLARY 3.5.3
Suppose that S is a basis of a reduced real root system A and let f be a linear
functional on the real vector space span A. There exists an element o of the
Weyl group W(A) such that we have

(foo)(§) =0

for any element ¢ of the basis S.

LEMMA 3.5.2
Suppose that S is a basis of a reduced real root system A. We have

{ bases of the reduced real root system A }
= {0(5) : 0 is an element of the subgroup W (S) }.

Proof. Suppose that f is a linear functional on the real vector space span A
such that the set f(A) does not contain the element 0. There exists an element
o of the subgroup W(S) such that we have

(foo)(§) >0

for any element ¢ of the basis S. We have Sy = o(95). O

COROLLARY 3.5.4
The Weyl group of a reduced real root system acts on the set of bases of the
reduced real root system transitively.

LEMMA 3.5.3
Suppose that S is a basis of a reduced real root system A. We have

A =W(S)8.

Proof. Suppose that £ is an element of the reduced real root system A and let 7
be an element of the set A\ {:|:§ } The subspace ker £ Nker 7 is a proper subset
of the subspace ker £. There exists a linear functional f; on the real vector space
span A such that we have

0= fo(&) <|fo(n)]

for any element 7 of the set A\ {:|:£ } There exists a linear functional f on the
real vector space span A such that we have

0< f(&) <|f(n)

for any element 7 of the set A\ {:I:{ } The element £ belongs to the basis
St and there exists an element o of the subgroup W(S) such that we have
Sf = O'(S) O
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COROLLARY 3.5.5
Suppose that S is a basis of a reduced real root system A. We have

A =TW(A)S.

THEOREM 3.5.9
Suppose that S is a basis of a reduced real root system A. We have

3.6 Semisimple Lie Algebras

Suppose that ¢ is a finite dimensional semisimple Lie algebra over an alge-
braically closed field F of characteristic 0 and let A denote the root system. We
have the Cartan decomposition

929069@9;‘.

HEA

PROPOSITION 3.6.1
Suppose that p is an element of the space g;. The linear mapping

G = 9% x> [y — B(z,y)]
is an isomorphism and we have dim g, = dimg_,,.

Proof. 1t is sufficient to show that the linear mapping is a monomorphism since
the dual mapping of the linear mapping is precisely

9o = Gp» y = [z = B(z,y)].

Suppose that x is an element of the space g, such that we have B(x,y) = 0 for
any element y of the space g_,,. We have x L g by Proposition [3.3.22 We have
x = 0 since the Killing form is nondegenerate. O

COROLLARY 3.6.1
We have A = —A.

ProproOSITION 3.6.2
Suppose that z and y are elements of the Cartan subalgebra. We have

B(z,y) = Y plx)p(y).

HEA
PROPOSITION 3.6.3
We have ¢gj = span A.
Proof. We have
m kerp={0}. O

HEA
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DEFINITION 3.6.1
We define an isomorphism

90 =+ 93 vt (2) = [y = Blz,y)]
and a symmetric form
(1, v) = B*(p,v) = B(t(n), t(v))
on the space g;.

ProrosiTION 3.6.4
Suppose that p is an element of the space g and let (x,y) be an element of the
space g, X g—,. We have

[z,y] = B(z,y)t(1).

ProrosiTION 3.6.5
Suppose that p is an element of the root system A. There exists an element
(z,y) of the space g, x g_, such that we have

B(I,y) =1, ['T7y] = t(:u)'

PROPOSITION 3.6.6
Suppose that p is an element of the space g} and let (x,y) be an element of the
space g, X g—, such that we have B(x,y) # 0. Suppose that h is an invariant
subspace for the derivations ad x and ady. We have

tr(ady, t(u)) = 0.

Proof. We may assume that the element p is contained in the root system A.
We have
[ad z,ad y] = B(z,y)ad t(u).

We have
0 = trfady, z,ady, y] = B(z,y) tr(ady t(p)). O

PROPOSITION 3.6.7
Suppose that p is a root and let i be a subspace of the Lie algebra ¢ such that
the sets [g,, h] and [g_,, h] are contained in the space h. We have

tr(adp t(p)) = 0.

Proof. We may assume that we have p # 0. There exists an element (x,y) of
the space g, x g, such that we have B(z,y) # 0. We have

tr(adp t(p)) =0

since the space h is invariant for the derivations ad x and ad y. O
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THEOREM 3.6.1
Suppose that u and v are elements of the root system A. We have

S ndim
n=—oo Ju+nv

B*(u,v) = — S dim g B*(v,v).
Proof. We define o
h = @ Jutnv-
We have )
0= tr(ad, t(v)) = i (dim gy4-ne) B* (1 + nv, v)
= (Y dimguin)B*(1,v) + (Y ndimguin,)B(v,v)

since the sets [g,, k] and [g_,, h] are contained in the space h. We have

S ndim
n=—oo Gu+nv

B* =
(,LL, V) an_oo dimg#_‘_ny

B*(v,v)

since we have
oo
Z dim g,4ny > dimg, > 0. O

n=—oo

DEFINITION 3.6.2
Suppose that p and v are elements of the root system A. We define

o0 .
Zn:—oo ndim Gp+nv
Q;w - - %3] di .
Zn:_oo 1M Gy+nv

We have
B*(/val/) = Q,LWB*(Vv V)'
THEOREM 3.6.2
Suppose that p is an element of the root system A. The element
1
B* (1 p) = s
ZVGA q?//t

is a positive rational number.

Proof. Suppose that we have B*(u,u) = 0. We have B*(u,v) = 0 for any
element v of the root system A. We have p = 0 since we have gj = spanA
and the symmetric form B* is nondegenerate. This is a contradiction. We have
B*(p, ) # 0. We have

1
ZVEA (dlm gV)qgu

B*(p, 1) =
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since we have

B* (i, 1) = B(t(u), t(w) = > (dim g, ) (t())”

veEA

> (dim g,) B* (n, v)?

veEA

= (dimg,)q2, B* (1, 11)*. O
veEA

THEOREM 3.6.3
Suppose that p is an element of the root system A.

1. We have dim g, = 1.
2. We have ZpNA = {£u}.

Proof. There exists an element (z,y) of the space g, x g_, such that we have
B(z,y) # 0. We define

h=TFy & Ft(n) & D gnp-
n=1

The space h is invariant for the derivations ad x and ad y since we have

(ady) (t(n)) = —(adt(p))(y)
= pu(t(n))y = B* (1, 1)y.

We have -
0 = tr(ady t(n)) = B*(, ) (=1 + Z ndim g,,,).

n=1

We have dim g, = 1 and we have dim g,,,, = 0 for any n > 1. O

THEOREM 3.6.4
Suppose that (u,r) is an element of the set (AU {0}) x A and let

n_ =max{n € Z; : p —nv is a root },

ny =max{n € Zy : p+nvis a root }.

The set {p +nv}nt is contained in the set A U {0} and we have

—n_—

_ 2B*(p,v)
T T B )
Proof. We define
n_ =min{n € N: y—nv is not a root } —1 >0,

ny =min{n € N: g+ nvis not aroot } —1 > 0.
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We define
n
h = @ Ju+nv-
We have
Ny
0 =tr(ad, t(v)) = Z (1 + ) (t(v))

= (ng +n_ +1)(B*(p,v) + wB*(l/, v)).

since the sets [g,, h] and [g_,, h] are contained in the space h. We have

_ 2B*(,v)
T B (n)

n_—n

Suppose that there exists an integer —n_ < n < n4 such that the element
i+ nv is not contained in the set A U {0}. We have

- 2B*(p+ (n—1)v,v) _ 2B*(u,v)

(
2(n—1
0< B*(v,v) B*(v,v) +2(n )
2B* (p+ (n+ Lr,v)  2B*(u,v)
< B*(v,v) B*(v,v) +2(n+1) <
This is a contradiction. O

DEFINITION 3.6.3
Suppose that (u,v) is an element of the set (AU {0}) x A. We define
_ 2B (uv)
Cuv = B*(v,v)

REMARK 3.6.1
The element p — ¢, v is contained in the set A U {0}.

Proof. We have —n_ < —c¢,, =nqp —n_ <ny. O

PROPOSITION 3.6.8
E| Suppose that p is an element of the root system A. We have

. 2t(p)
B*(p, 1)

THEOREM 3.6.5
The root system of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is reduced.

3Proposition m
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THEOREM 3.6.6
Suppose that u is an element of the root system A. The subspace

9u D g—p BFp”
is a Lie subalgebra isomorphic to the Lie algebra M (2,F) N ker tr.

Proof. There exists an element (x,y) of the space g, x g_, such that we have
[z,y] = p*. We have [p*, x] = 2z and we have [u*,y] = —2y. O

THEOREM 3.6.7
Suppose that @ and v are elements of the root system A such that the element
1+ v is contained in the root system A and let

n_ =max{n € Zy : u—nv is a root },
ny =max{n € Zy : y+nv is a root }.
The adjoint representation of the Lie algebra
M(2,F) Nnkertr = g, ® g—, ® Fv*

on the vector space

ny
@ Ju+nv

n=—m-—

is irreducible.

Proof. The representation is completely reducible by Weyl’s theorem. The set
{pw+mnv}rt s contained in the root system A and we have

(4 nsn)(v") =ny +n_. O

COROLLARY 3.6.2
Suppose that 4 and v are elements of the root system A such that the element
[+ v is contained in the root system A. We have [g,, gu] = gu+to-

PROPOSITION 3.6.9
The set A(spang A*) is contained in the field Q.

ProrosiTiON 3.6.10
We have rank g = dim spang A = dimg spang A*.

PropoOsSITION 3.6.11
We have g; = spang A @ FF.

Proof. There exists a canonical epimorphism of the space spang A ® F onto the
space g5. We have dim g5 = dim(spang A ® F) = rank g. O

PROPOSITION 3.6.12
We have (spang A)* = spang A*.
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ProrosiTION 3.6.13

The Killing form induces the inner product on the real vector space (spanQ AR
R)* = spang A* @ R.

Proof. Suppose that S is a basis of the space g; that is contained in the root
system A. The symmetric matrix

ok 4B*(,LL,V)
(B(IU’ 14 )_ B*(}L,ﬂ)B*(V7 V));L,UES

belongs to the group M (rank g, Q)* and we have

Blr,2)= 3 pla)* 20

pHEA

for any element x of the space spang A*. The space spang A* is a dense subspace
of the space spang A* @R by Proposition Suppose that z is an arbitrary
element of the space spang A*®@R. There exists a sequence (x, )52, of the space
spang A* such that we have x = lim,,_, o, x,,. We have

B(z,z) = lim B(xn,z,)

n—oo
. 2 __ 2
= lim Y p(ea)® =) u()® >0,
HEA HEA

The nonnegative symmetric form on the real vector space spang A* @ R is an
inner product since it is nondegenerate. O

Suppose that AT\ (AT + A™) is a basis of the reduced real root system A
and let

7 =P g 9 =P g9-u-

HEAT HEAT

ProproSITION 3.6.14
Any element of the Lie subalgebras ¢* is nilpotent.

COROLLARY 3.6.3
The Lie algebras ¢& are nilpotent.

COROLLARY 3.6.4
The Lie algebras gy @ g& are solvable and we have D(go ® g%) = g*.

Suppose that we have AT\ (At + AT) = {11, ]} and let (24, y) be an
element of the space g, X g—,, such that we have [zy,yx] = pf for any k.

THEOREM 3.6.8
We have the following.

1. The Lie algebra g is generated by the set {xk}?ﬁ(g.
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2. The Lie algebra g~ is generated by the set {yk}za:nfg

3. The Lie algebra g is generated by the set {xk}f:fg U {yk};f:fg.

THEOREM 3.6.9
We have the following.

1. We have [u], 7] = 0.

2. We have [z, y;] = d;;1;.

3. We have [u}, ;] = Cp, .75
4. We have (1}, y;] = —C, Y-

5. We have
(adz;)” “mimit (z;) = (ady;) " arit (y;) = 0

provided that the elements ;; and p; are distinct.
Proof. 1. The Cartan subalgebra is abelian.

2. Suppose that the elements p; and p; are distinct. The elements [z;, y;]
belongs to the space g,,—,; = {0}.

3. We have [pf, 2;] = p; (1) 2; = Chuypu ;.
4. We have [u7,y;] = —p;(17)y; = —Cluyp. ;-

5. We have
—Cyp; = max{n € Zy : pj + ny; is a root }.

The element (adz;)~ i1 (z;) belongs to the space

gﬂj—"_(_cﬂjﬂi-‘rl)/l‘i = {0} O

(v A) =50 )
EXAMPLE 3.6.1

Suppose that m is a positive integer.

REMARK 3.6.2
We have

0 0 0
0 0 diag(z1,...,2m) | :21,...,2m €F
0 —diag(z1,...,%m) 0

is a Cartan subalgebra of the semisimple Lie algebra

{zeM2m+1,F):a" = -z}
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We have

(o0 2A)

{xeM(2m+1,F)inﬂf}(1@\}§<h h))

0  x12 213
T . T _ T _
= —Xi3 T2  T23 P Ta3 + Toz = X32 + 235 =0 .
T T
—T12  X32 T2

We have
B0 ) (oo )

% (—\E ¢1—7> - (diag(ml’om’xm) _diag(x?,...,%n)>'
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Chapter 4

Universal Enveloping
Algebras

4.1 Poincaré-Birkhoff-Witt Theorem

Suppose that g is a Lie algebra over a field F and let X be its basis. By the
well-ordering theorem there exists a total order on the set X. We write 7
for the canonical homomorphism of the tensor algebra T'(g) onto the universal
enveloping algebra U(g). We define

Un(g) = =(EPT*(9))
k=0
for any nonnegative integer n. We have lim,,_,o U,(g9) = U(g).

REMARK 4.1.1
Suppose that n is a nonnegative integer and let f be a linear mapping of the
vector space @ _, T"(g) into any vector space such that we have

floy-xp) = f(x1 TpTp_1 - Tom) + f(x1 o[, TR ~$m)
for any element z of the set
{xeXm:xk<xk,1}
for any integers m and k. We have
f(:m o (Tporzk — TRTE—1 — [TR—1, T8)) - ~xm) =0
for any element x of the set ¢”* for any integers m and k.

ProrosITION 4.1.1
The universal enveloping algebra U(g) is linearly generated by the set

U{F(‘rl)"'ﬂ(xn):xlS"'SﬂanX}.

n=0

137
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Proof. 1t is sufficient to show that the subspace U, (g) is linearly generated by
the set

U {1 m@m) a1 < <ameX} (4.1)
m=0

for any nonnegative integer n. The proof is by induction on the nonnegative
integer n. Suppose that we have n > 0. It is sufficient to show that the element
m(x1) -+ 7(xy,) is contained in the subspace generated by the set for any
element x of the set X™. The proof is by induction on the nonnegative integer

r(z) = #{(i,j): i <jand z; < }.

Suppose that we have r(z) > 0. We have z < xj_1 for some integer k. The
element

m(xy) - m(xy) =7m(xr) - w(ep)m(Tk—1) - 7(Xh)
+m(z1) 7w ([who1, k]) - (@)

is contained in the subspace generated by the set (4.1) by the induction hypoth-
esis since we have r(z1,..., 2k, Zk—1,...,2,) = 7(z) — 1 and the element

m(x) - 7w ([wp—1, zx]) - (@)

belongs to the subspace U,_1(g). O

PROPOSITION 4.1.2

There exists a unique linear mapping f of the tensor algebra T'(g) onto the
symmetric algebra S(g) satisfying the following.

1. We have
f(xl...xn):xl...xn

for any element z of the set
{zeX" iz <- <, }
for any nonnegative integer n.
2. We have
flxyxp) = f(x1- Tpap_1-Tn) + f($1 o[z, Tr] - mn)
for any element x of the set
{zeX" iz <mp1}
for any integers n and k.

Proof. 1t is sufficient to show the following proposition. O
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ProrosITION 4.1.3
Suppose that f is a linear mapping of the subspace

n—1
@T’“(g) @ span{ 1 -+, : x is an element of the set X"
k=0
such that we have r(z) <r}

into any vector space such that we have
floy-xp) = f(z1 TpTp_1- Tm) —|—f(x1 . [Ckahxk] .. .xm)
for any element x of the set
{zeX™ i <mp_1}

for any integers m and k. We have

flwy - mp, g, 1) + f(331 o[y 1, Ty |- xn)
= f(@1 Tyt @n) + (T2 [Thy 1, Thy] - )
for any element z of the set
{ze X" ap, <xp,—1 and @, < Tpy—1 ) N = (r)
for any integers k; and k.
Proof. Suppose that we have k = k; = ko — 1. We have
f(' (zhzp—1 + [TR—1, 71]) ) — [ zhprzpr—y )
= f(' ([, Trr1)Th—1 + TelTp—1, Tos1] + [Tr-1, Tr]Trgr) - )
and we have
f(' (zhpk + [r, Trpa]) ) — [ ppzpzp )
= f(' c(Tp1[meo1, k] + [Bh-1, Teg1) 2k + To1 [Tk, Thsa)]) )
We have
f(' o (Ikl“k—l + [Ik—l,l“k]) ) - f(' o (Ik+1$k =+ [Ik,$k+1]) )
= f( ([[kakﬂ],l“k—ﬂ + [k, [wp—1, Tpga]] + [[xk—hxk]al"k—i-l]) )

Suppose that we have ki < ks — 1. We have

f( .. (fklxklfl 4 [:L’klil’xk‘l]) . ) — f( .. (mbxkz,l + [m;@,l,xkz]) e

= f(' (ke 1+ [Te o128, ]) (TR Ty 1+ [Thy -1, Tk ) ) 0
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COROLLARY 4.1.1
There exists a unique linear mapping f of the universal enveloping algebra U(g)
onto the symmetric algebra S(g) such that we have

Fla@r) - m(wn)) =212
for any element x of the set
{xeX":xl §-~§xn}
for any nonnegative integer n.

THEOREM 4.1.1 (Poincaré-Birkhoff-Witt)
We have the following.

1. The canonical homomorphism of the Lie algebra g into the universal en-
veloping algebra U(yg) is an imbedding.

2. The linear mapping f of the symmetric algebra S(g) onto the universal
enveloping algebra U(g) defined by

f(xlxn) =21 Ty
for any nonnegative integer n and for any element x of the set
{xeX":xl §-~§xn}
is a linear isomorphism.

Proof. The linear mapping f of the symmetric algebra S(g) onto the universal
enveloping algebra U(g) defined by

[l zn) =m(z1) - m(2,)
for any nonnegative integer n and for any element x of the set
{xeX":x1§-~§xn}
is an imbedding by the previous proposition. O

PRrROPOSITION 4.1.4
The universal enveloping algebra of a Lie subalgebra is a subalgebra with iden-
tity of the universal enveloping algebra of the Lie algebra.

DEFINITION 4.1.1
We define U_1(g) = {0} and we define

gr,U(9) = 77—~

for any nonnegative integer n.
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PRrROPOSITION 4.1.5
We have

groU(g) = Uo(g) =T, gr1 U(g) = =—==g

PROPOSITION 4.1.6
The mapping

gr,, U(g) x gr, U(g) = gr,, 1, U(g),
(LL' + Umfl(g)vy + Unfl(g)) =y + Uernfl(g)

is bilinear for any nonnegative integers m and n and the direct sum
oo
grU(g) = Per, Uly)
n=0

is a graded commutative algebra with identity.

THEOREM 4.1.2
We have S(g) = grU(g).

Suppose that ¢g; and go are Lie algebras over a field.

ProPOSITION 4.1.7
A linear mapping f of the algebra U(g;) into the algebra U(g>) such that the
space f(Uy,(g1)) is contained in the space Uy, (gz) for any nonnegative integer n
induces a linear mapping gr f of the algebra S(g;) = grU(g1) into the algebra
S(g2) = grU(g2) such that we have

grf(xn + Unfl(gl)) = f(mn) + Unfl(QQ)
for any element x,, of the space U,,(g1) for any nonnegative integer n.
1. We have gr f(1) = 1 provided that we have f(1) = 1.

2. The mapping gr f is a homomorphism of graded algebras provided that
the mapping f is a homomorphism of algebras.

Proof. Suppose that the linear mapping f is a homomorphism of algebras. We
have

gr f(wy) =D [@r)g(Yn—r) + Un-1(g2) = gr f(x) gr f(y)
n=0 k=0
for any elements x and y of the algebra grU(g). O

THEOREM 4.1.3
We have U(g1 @ g2) = U(g1) @ U(g2).
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Suppose that Vi and V; are vector spaces over a field.

COROLLARY 4.1.2
We have S(V; & V,) = S(V1) ® S(Va).

Proof. Any vector space is an abelian Lie algebra. O

PROPOSITION 4.1.8
The inclusion mapping of the algebra U(g;) into the algebra U(g;) ® U(go)
induces the inclusion mapping of the algebra S(g1) = grU(g1) into the algebra

S(g1) @ S(g2) = gf(U(gl) ® U(g2))-

PROPOSITION 4.1.9
We have
r@1+ Uy 1(q1 @ g2) = (x + Unfl(gl)) ®1

for any element x of the space U, (g1) for any nonnegative integer n.

Proof. We write f for the inclusion mapping of the algebra U(g;) into the alge-
bra U(g;) @ U(g2). We have

21+ Un_1(q1 D g2) = grf(x + Un_l(gl)) = (33 + Un_l(gl)) ®1. O

ProrosITION 4.1.10
The diagonal mapping A is the unique homomorphism of algebras with identity
of the algebra U(g) into the algebra U(g) ® U(g) such that we have

Alz)=z@1+1®
for any element x of the Lie algebra g.

ProrosiTION 4.1.11
The induced mapping gr A is a homomorphism of graded algebras with identity
of the algebra S(g) into the algebra S(g) ® S(g) such that we have

grAz)=z®1+ 1z
for any element x of the Lie algebra g.

DEFINITION 4.1.2
An element x of the universal enveloping algebra U(g) is said to be primitive if
we have A(z) =z® 1+ 1® .

THEOREM 4.1.4
Suppose that the field F is of characteristic 0. Any primitive element of the
universal enveloping algebra U(g) belongs to the Lie algebra g.

Proof. Suppose that the Lie algebra g is abelian and let x be its basis. We have

U(g) = Flz], U(g)@U(g) =Ul(g @ g) = Flz1, x2].
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We have
Af(z) = f(z1 + z2)

for any element f(x) of the universal enveloping algebra U(g) = F[x] since we
have

Alz)=2®14+1Qz =z + x2

for any element = of the basis @. Suppose that f(x) is a primitive element of
the universal enveloping algebra U(g) = F[x]. We have

D 2" ful@) = f(2@) = 2f(x) = Y 2fu(w)

since we have

fl@r+m) = Af(x) = flx) @1+ 1@ f(z) = fz1) + f(22).

The element f(x) = fi(x) belongs to the Lie algebra g.
Suppose that the Lie algebra g is arbitrary and let x be a primitive element
of the universal enveloping algebra U(g). We define

n=min{n e€N:z € Uy,(g) }.
The element z + U,,—1(g) belongs to the space gr; U(g) = ¢ since we have

g Az +Unp1(9) =201+102+U,_1(g D g)
=(@@1+Un1(989)+(102+Una(g® g))
= (z+Un1(9)) @1+ 10 (z+ Un-1(9))
by Proposition We have n = 1 since the element z + U, —1(g) is primitive.

There exists a scalar v such that the element © — v belongs to the Lie algabra
g. Wehave v =214+ 1@z — A(z) =0. O

4.2 Free Lie Algebras

In this section algebras are not necessarily associative.

DEFINITION 4.2.1
A set with a binary operation is called a magma.

ProprosSITION 4.2.1
A set is a subset of the free magma on the set.

Suppose that X is a set. We write Mx for the free magma on the set X.

THEOREM 4.2.1
Suppose that f is a mapping of the set X into a magma M. There exists a
unique homomorphism of the magma My into the magma M extending the
mapping f.
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Suppose that F is a field.

PROPOSITION 4.2.2
There exists a unique bilinear binary operation on the vector space F&#Mx ex-
tending the binary operation on the magma Mx.

PROPOSITION 4.2.3
The vector space F®Mx is an algebra over the field F.

PROPOSITION 4.2.4
The magma My is a submagma of the algebra F®Mx

PRroPOSITION 4.2.5
The algebra F®Mx = > FX» is graded.

n=1

THEOREM 4.2.2
Suppose that f is a mapping of the set X into an algebra A. There exists a
unique homomorphism of the algebra F®Mx into the algebra A extending the

mapping f.
We write Ly for the free Lie algebra on the set X.

THEOREM 4.2.3
We have U(Lx) = F(X) = T(F®X).

ProrosITION 4.2.6
The Lie algebra Lx is generated by the set X.

THEOREM 4.2.4
Suppose that f is a mapping of the set X into a Lie algebra L. There exists a
unique homomorphism of the Lie algebra Lx into the Lie algebra L extending
the mapping f.

DEFINITION 4.2.2
We define

% =Lx NF(X)", F(X)" =span{ @y - @y 1 21,...,2, € X }
for any nonnegative integer n.

PROPOSITION 4.2.7
The Lie algebra Lx = @, ; L'x is graded.

PROPOSITION 4.2.8
We have

L% =span{ (ad 1) -+ (ad &p—1)(xn) : (zk)j=y € X" }
for any positive integer n.

PROPOSITION 4.2.9
We have the following.
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1. The kernel of the canonical homomorphism of the graded algebra F®Mx
onto the graded Lie algebra Lx is the ideal generated by the following

elements.
[z, z], r € F®Mx

[[z1, 22), 23] + [[w2, 23], 21] + [[w3, 21], 22, @1, W2, 73 € FOMX

2. The kernel of the canonical homomorphism of the graded algebra F®Mx

onto the graded Lie algebra Lx is the ideal generated by the following
homogeneous elements.

[l‘,ﬂ?}, x € MX
(@1, 22] + [72, 1], T # 19 € Mx
([x1, z2], 23] + [[w2, 23], 21] + [[23, 1], 22], x1,T2,23 € Mx

PROPOSITION 4.2.10
The associative algebra F(X) = @ _,F(X)" is graded and its completion

n=0
oo

F(X) =TI, _o F(X)" is an associative algebra.

PROPOSITION 4.2.11
The completion Ly =[]~ ; L is a Lie subalgebra of the ideal [~ F(X)".
Proof. We have

oo n—1

[fag] = Z Z[flﬁgn—k]

n=2 k=1

oo n—1

= Z Z(fkgnfk — gn—rfr) =f9—9f

n=2 k=1
for any elements f and ¢ of the completion L. O

PROPOSITION 4.2.12
We have the following.

1. The diagonal mapping of the universal enveloping algebra F(X) into the
universal enveloping algebra F(X) @ F(X) is graded.

2. The diagonal mapping extends to the homomorphism of algebras with
identity

F=Y I A =D A(fn)
n=0 n=0

of the completion F(X) into the completion F(X) ® F(X).



146 CHAPTER 4. UNIVERSAL ENVELOPING ALGEBRAS



Bibliography

1]

2]

[4]

[5]

Michael Francis Atiyah and Ian Grant Macdonald. Introduction to commu-
tative algebra. Addison-Wesley series in mathematics. CRC Press, 2019.

Roger W. (Roger William) Carter. Lie algebras of finite and affine type.
Number 96 in Cambridge studies in advanced mathematics. Cambridge Uni-
versity Press, 2005.

James E. Humphreys. Introduction to Lie algebras and representation theory.
Number 9 in Graduate texts in mathematics. Springer-Verlag, 7th corr. print
edition, 1997.

John M. Lee. Introduction to smooth manifolds. Number 218 in Graduate
texts in mathematics. Springer, 2nd ed edition, 2013.

Yozo Matsushima. Lie algebra theory (in Japanese). Number 3-A. Kyoritsu
Shuppan, 1956.

Ichiro Satake. Story of Lie algebras (in Japanese). Nippon Hyoron, new
edition, 2002.

Hajime Sato. Introduction to Lie algebras (in Japanese). Shokabo, 2000.

Jean Pierre Serre. Lie algebras and Lie groups : 196/ lectures given at Har-
vard University. Number 1500 in Lecture notes in mathematics. Springer-
Verlag, 2nd ed edition, 1992.

147



	Introduction and Examples
	Lie Algebras over Fields
	The Killing Form on a Lie Algebra
	Examples of the Killing Forms
	Lie Algebras over Fields of Characteristic Two
	Lie Algebras over Fields of Characteristic Zero

	Fundamental Theorems
	Engel's Theorem
	Lie's Theorem
	Jordan Decomposition of a Linear Mapping
	Cartan's Criteria
	Cohomology
	Weyl's Theorem
	Lie Groups

	Root Systems and Semisimple Lie Algebras
	Zariski Topology
	Commutative Algebras
	Cartan Subalgebras
	Lie Algebras M(2,F)ker`3́9`42`"̇613A``45`47`"603Atr
	Root Systems
	Semisimple Lie Algebras

	Universal Enveloping Algebras
	Poincaré-Birkhoff-Witt Theorem
	Free Lie Algebras


