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Chapter 1

Introduction and Examples

1.1 Lie Algebras over Fields

Suppose that V is a vector space over a field F.

Definition 1.1.1
We write homV for the endomorphism algebra hom(V, V ).

Proposition 1.1.1
The vector space homV is a Lie algebra over F.

Proof. The vector space homV is an algebra over F and by Remark of 342 (cf.
Lie Algebras).

Suppose that L is a Lie algebra over F.

Definition 1.1.2
A representation of L on V is a homomorphism of L into homV .

Definition 1.1.3
We define (adx)(y) = [x, y] for ∀(x, y) of L2.

Proposition 1.1.2
The mapping x 7→ adx is a representation of L on L.

Proof. The mapping adx is a linear mapping on L for ∀x.

[adx, ad y](z) = (adx)(ad y)(z)− (ad y)(adx)(z)

=
[
x, [y, z]

]
−
[
y, [x, z]

]
= −

[
z, [x, y]

]
=
(
ad[x, y]

)
(z)

for ∀(x, y, z).
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6 CHAPTER 1. INTRODUCTION AND EXAMPLES

Definition 1.1.4
The mapping x 7→ adx is called the adjoint representation.

Definition 1.1.5
An invariant subspace for ad(L) is called an ideal.

1.2 The Killing Form on a Lie Algebra

Suppose that L is a finite dimensional Lie algebra over a field F.

Definition 1.2.1
We define

B(x, y) = tr
(
(adx)(ad y)

)
for ∀(x, y) of L2. The symmetric form B is called the Killing form.

Proposition 1.2.1 1. The mapping

x 7→
[
y 7→ B(x, y)

]
(1.1)

is a linear mapping of L into L∗.

2. The Killing form on L is nondegenerate if and only if the linear mapping
(1.1) is an isomorphism of L onto L∗.

Proposition 1.2.2
We have

B
(
(ad z)(x), y

)
= −B

(
x, (ad z)(y)

)
for ∀(x, y, z) of L3.

Proof. We have

B
(
(ad z)(x), y

)
= tr

(
ad[z, x] ad y

)
= tr

(
[ad z, adx] ad y

)
= − tr(adx ad z ad y − ad z adx ad y)

= − tr
(
adx(ad z ad y − ad y ad z)

)
= − tr

(
adx ad

(
(ad z)(y)

))
= −B

(
x, (ad z)(y)

)
.

We identify

M(2,F)↔ F4,

(
x11 x12

x21 x22

)
↔


x11

x12

x21

x22

 .
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Then we have

ad

(
a b
c d

)
x11

x12

x21

x22

 = ad

(
a b
c d

)(
x11 x12

x21 x22

)

=

(
a b
c d

)(
x11 x12

x21 x22

)
−
(
x11 x12

x21 x22

)(
a b
c d

)
=

(
−cx12 + bx21 −bx11 + (a− d)x12 + bx22

cx11 + (d− a)x21 − cx22 cx12 − bx21

)

=


−cx12 + bx21

−bx11 + (a− d)x12 + bx22

cx11 + (d− a)x21 − cx22

cx12 − bx21



=


0 −c b 0
−b a− d 0 b
c 0 d− a −c
0 c −b 0



x11

x12

x21

x22


for ∀

(
a b
c d

)
of M(2,F).

Proposition 1.2.3 1. Suppose that
{
eij
}m
i,j=1

denote the matrix units. Then

we have

ad

(
a b
c d

)
(e11, e12, e21, e22) = (e11, e12, e21, e22)


0 −c b 0
−b a− d 0 b
c 0 d− a −c
0 c −b 0


for ∀

(
a b
c d

)
of M(2,F).

2. The Killing form on the Lie algebra M(2,F) is given by

B

((
a b
c d

)
,

(
p q
r s

))

= tr




0 −c b 0
−b a− d 0 b
c 0 d− a −c
0 c −b 0




0 −r q 0
−q p− s 0 q
r 0 s− p −r
0 r −q 0




= 4(br + cq) + 2(a− d)(p− s)

for ∀
((

a b
c d

)
,

(
p q
r s

))
of M(2,F)2.



8 CHAPTER 1. INTRODUCTION AND EXAMPLES

3. We have

B

((
a b
c d

)
,

(
a b
c d

))
= 8bc+ 2(a− d)2

for ∀
(
a b
c d

)
of M(2,F).

Proposition 1.2.4
The set of traceless matrices{

x ∈M(m,F) : trx = 0
}

is an ideal of the Lie algebra M(m,F) for ∀m and

dim
{
x ∈M(m,F) : trx = 0

}
= m2 − 1

for ∀m ≥ 1.

Proof. The set
{
eij
}
i 6=j∪

{
eii−ei+1,i+1

}m−1

i=1
is a basis of

{
x ∈M(m,F) : trx =

0
}

for ∀m ≥ 1.

We identify{
x ∈M(2,F) : trx = 0

}
↔ F3,(
x11 x12

x21 −x11

)
= x11H + x12X + x21Y ↔

x11

x12

x21

 ,

where

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
is a basis of

{
x ∈M(2,F) : trx = 0

}
. Then we have

ad

(
a b
c −a

)x11

x12

x21

 = ad

(
a b
c −a

)(
x11 x12

x21 −x11

)

=

(
−cx12 + bx21 −2bx11 + 2ax12

2cx11 − 2ax21 cx12 − bx21

)

=

 −cx12 + bx21

−2bx11 + 2ax12

2cx11 − 2ax21


=

 0 −c b
−2b 2a 0
2c 0 −2a

x11

x12

x21

 .

for ∀
(
a b
c −a

)
of
{
x ∈M(2,F) : trx = 0

}
.
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Proposition 1.2.5 1. We have

ad

(
a b
c −a

)
(H,X, Y ) = (H,X, Y )

 0 −c b
−2b 2a 0
2c 0 −2a


for ∀

(
a b
c −a

)
of
{
x ∈M(2,F) : trx = 0

}
.

2. The Killing form on the Lie algebra
{
x ∈M(2,F) : trx = 0

}
is given by

B

((
a b
c −a

)
,

(
p q
r −p

))

= tr

 0 −c b
−2b 2a 0
2c 0 −2a

 0 −r q
−2q 2p 0
2r 0 −2p


= 4(br + cq) + 8ap

for ∀
((

a b
c −a

)
,

(
p q
r −p

))
of
{
x ∈M(2,F) : trx = 0

}2
.

Proposition 1.2.6
The set of upper triangular matrices{

x ∈M(m,F) : xij = 0 for ∀i > ∀j
}

is a Lie subalgebra of M(m,F) for ∀m.

We identify

{
x ∈M(2,F) : x21 = 0

}
↔ F3,

(
x11 x12

0 x22

)
↔

x11

x12

x22

 .

Then we have

ad

(
a b
0 c

)x11

x12

x22

 = ad

(
a b
0 c

)(
x11 x12

0 x22

)

=

(
0 −bx11 + (a− c)x12 + bx22

0 0

)

=

 0
−bx11 + (a− c)x12 + bx22

0


=

 0 0 0
−b a− c b
0 0 0

x11

x12

x22

 .

for ∀
(
a b
0 c

)
of
{
x ∈M(2,F) : x21 = 0

}
.
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Proposition 1.2.7 1. We have

ad

(
a b
0 c

)
(e11, e12, e22) = (e11, e12, e22)

 0 0 0
−b a− c b
0 0 0



for ∀
(
a b
0 c

)
of
{
x ∈M(2,F) : x21 = 0

}
.

2. The Killing form on the Lie algebra
{
x ∈M(2,F) : x21 = 0

}
is given by

B

((
a b
0 c

)
,

(
p q
0 r

))
= tr

 0 0 0
−b a− c b
0 0 0

 0 0 0
−q p− r q
0 0 0


= (a− c)(p− r)

for ∀
((

a b
0 c

)
,

(
p q
0 r

))
of
{
x ∈M(2,F) : x21 = 0

}2
.

3. The Killing form on the Lie algebra
{
x ∈ M(2,F) : x21 = 0

}
is degener-

ate.

Proof.

B

((
a b
0 c

)
,

(
1 0
0 1

))
= 0

for ∀
(
a b
0 c

)
of
{
x ∈M(2,F) : x21 = 0

}
.

Proposition 1.2.8
The set of strictly upper triangular matrices{

x ∈M(m,F) : xij = 0 for ∀i ≥ ∀j
}

is a Lie subalgebra of M(m,F) for ∀m.

We identify

{
x ∈M(3,F) : xij = 0 for ∀i ≥ ∀j

}
↔ F3,

0 x12 x13

0 0 x23

0 0 0

↔
x12

x13

x23

 .



1.2. THE KILLING FORM ON A LIE ALGEBRA 11

Then we have

ad

0 a b
0 0 c
0 0 0

x12

x13

x23

 = ad

0 a b
0 0 c
0 0 0

0 x12 x13

0 0 x23

0 0 0


=

0 0 −cx12 + ax23

0 0 0
0 0 0


=

 0
−cx12 + ax23

0


=

 0 0 0
−c 0 a
0 0 0

x12

x13

x23



for ∀

0 a b
0 0 c
0 0 0

 of
{
x ∈M(3,F) : xij = 0 for ∀i ≥ ∀j

}
.

Proposition 1.2.9 1. We have

ad

0 a b
0 0 c
0 0 0

 (e12, e13, e23) = (e12, e13, e23)

 0 0 0
−c 0 a
0 0 0



for ∀

0 a b
0 0 c
0 0 0

 of
{
x ∈M(3,F) : xij = 0 for ∀i ≥ ∀j

}
.

2. The Killing form on the Lie algebra
{
x ∈ M(3,F) : xij = 0 for ∀i ≥ ∀j

}
is given by

B

0 a b
0 0 c
0 0 0

 ,

0 p q
0 0 r
0 0 0

 = tr

 0 0 0
−c 0 a
0 0 0

 0 0 0
−r 0 p
0 0 0

 = 0

for ∀

0 a b
0 0 c
0 0 0

 ,

0 p q
0 0 r
0 0 0

 of
{
x ∈M(3,F) : xij = 0 for ∀i ≥ ∀j

}2
.

3. The Killing form on the Lie algebra
{
x ∈ M(3,F) : xij = 0 for ∀i ≥ ∀j

}
is degenerate.

Proposition 1.2.10
The set of alternating matrices{

x ∈M(m,F) : xT = −x
}

is a Lie subalgebra of M(m,F) for ∀m.
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Proposition 1.2.11
We have

B(x, y) = 2m tr(xy)− 2(trx)(trx)

for ∀x of M(m,F).

Proof. Suppose that A is an algebra over F and let (x, y) be an element of A2.

(adx)(ad y) =
(
L(x)−R(x)

)(
L(y)−R(y)

)
= L(xy)− L(x)R(y)−R(x)L(y) +R(yx).

Suppose that A is finite dimensional.

B(x, y) = trL(xy)− tr
(
L(x)R(y)

)
− tr

(
R(x)L(y)

)
+ trR(yx).

Suppose that A = M(m,F). Since

trL(x) =

m∑
i,j=1

(xeij)ij =

m∑
i,j=1

xii = m trx

tr
(
L(x)R(y)

)
=

m∑
i,j=1

(xeijy)ij =

m∑
i,j=1

xiiyjj = (trx)(tr y)

trR(x) =

m∑
i,j=1

(eijx)ij =

m∑
i,j=1

xjj = m trx,

we have B(x, y) = 2m tr(xy)− 2(trx)(tr y).

Example 1.2.1
We have

B

((
a b
c d

)
,

(
p q
r s

))
= 4 tr

((
a b
c d

)(
p q
r s

))
− 2 tr

(
a b
c d

)
tr

(
p q
r s

)
= 4(ap+ br + cq + ds)− 2(a+ d)(p+ s)

= 4(br + cq) + 2(a− d)(p− s)

for ∀
((

a b
c d

)
,

(
p q
r s

))
of M(2,F)2.

Proposition 1.2.12
Suppose that L0 is an ideal of L.

1. The vector space L/L0 is a Lie algebra.

2. The Killing form on L0 is the restriction of the Killing form on L.
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Proof. There exists a basis {ek}nk=1 of L such that {ek}n0

k=1 is a basis of L0. We
define {fk}nk=1 to be the dual basis of {ek}nk=1.

B(x, y) =

n∑
k=1

fk
(
(adx)(ad y)(ek)

)
=

n0∑
k=1

fk
(
(adx)(ad y)(ek)

)
for ∀(x, y) of L2

0.

Example 1.2.2 1. The Killing form on the ideal
{
x ∈ M(m,F) : trx = 0

}
of

the Lie algebra M(m,F) is given by

B(x, y) = 2m tr(xy)

for ∀(x, y) of
{
x ∈M(m,F) : trx = 0

}2
.

2. The Killing form on the ideal
{
x ∈M(2,F) : trx = 0

}
of the Lie algebra

M(2,F) is given by

B

((
a b
c −a

)
,

(
p q
r −p

))
= 4 tr

((
a b
c −a

)(
p q
r −p

))
= 4(br + cq) + 8ap

for ∀
((

a b
c −a

)
,

(
p q
r −p

))
of
{
x ∈M(2,F) : trx = 0

}2
.

Proposition 1.2.13
Suppose that J is an element of M(m,F).

L =
{
x ∈M(m,F) : xTJ + Jx = 0

}
is a Lie subalgebra of M(m,F).

Proof. Suppose that x and y are elements of L.

[x, y]TJ + J [x, y] =
(
yTxT − xT yT

)
J + J [x, y]

= −yTJx+ xTJy + J [x, y]

= Jyx− Jxy + J [x, y]

= 0

and the element [x, y] belongs to L.

Proposition 1.2.14

dim

{
x ∈M(2m,F) : xT

(
0 1
−1 0

)
+

(
0 1
−1 0

)
x = 0

}
= 2m2 +m.
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Proof.

xT
(

0 1
−1 0

)
+

(
0 1
−1 0

)
x = 0

⇔
(
xT11 xT21

xT12 xT22

)(
0 1
−1 0

)
+

(
0 1
−1 0

)(
x11 x12

x21 x22

)
= 0

⇔
(
−xT21 + x21 xT11 + x22

−xT22 − x11 xT12 − x12

)
= 0

for ∀x of M(2m,F).

The set

{
eij − em+j,m+i

}m
i,j=1

∪
{
ei,m+i

}m
i=1
∪
{
ei,m+j + ej,m+i

}
1≤i<j≤m

∪
{
em+i,i

}m
i=1
∪
{
em+i,j + em+j,i

}
1≤i<j≤m

is a basis of the Lie algebra.

1.3 Examples of the Killing Forms

Suppose that F is a field such that char(F) 6= 2.

Proposition 1.3.1
The Killing form on the ideal

{
x ∈ M(2,F) : trx = 0

}
of the Lie algebra

M(2,F) is nondegenerate.

Proof. Suppose that x is an element of
{
x ∈ M(2,F) : trx = 0

}
such that[

y 7→ B(x, y)
]

= 0. Then we have

x = B(x, 8−1H)H +B(x, 4−1Y )X +B(x, 4−1X)Y = 0.

Proposition 1.3.2
We have

B(x, y) =
B(x+ y, x+ y)−B(x, x)−B(y, y)

2

for ∀(x, y) of L2.

We identify

{
x ∈M(3,F) : xT = −x

}
↔ F3,

 0 x12 x13

−x12 0 x23

−x13 −x23 0

↔
x12

x13

x23

 .
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Then we have

ad

 0 a b
−a 0 c
−b −c 0

x12

x13

x23

 = ad

 0 a b
−a 0 c
−b −c 0

 0 x12 x13

−x12 0 x23

−x13 −x23 0


=

 0 cx13 − bx23 −cx12 + ax23

−cx13 + bx23 0 bx12 − ax13

cx12 − ax23 −bx12 + ax13 0


=

 cx13 − bx23

−cx12 + ax23

bx12 − ax13


=

 0 c −b
−c 0 a
b −a 0

x12

x13

x23



for ∀

 0 a b
−a 0 c
−b −c 0

 of
{
x ∈M(3,F) : xT = −x

}
.

Proposition 1.3.3 1. We have

ad

 0 a b
−a 0 c
−b −c 0

 (e12 − e21, e13 − e31, e23 − e32)

= (e12 − e21, e13 − e31, e23 − e32)

 0 c −b
−c 0 a
b −a 0



for ∀

 0 a b
−a 0 c
−b −c 0

 of
{
x ∈M(3,F) : xT = −x

}
.

2. The Killing form on the Lie algebra
{
x ∈M(3,F) : xT = −x

}
is given by

B

 0 a b
−a 0 c
−b −c 0

 ,

 0 p q
−p 0 r
−q −r 0


= tr

 0 c −b
−c 0 a
b −a 0

 0 r −q
−r 0 p
q −p 0

 = −2(ap+ bq + cr)

for ∀

 0 a b
−a 0 c
−b −c 0

 ,

 0 p q
−p 0 r
−q −r 0

 of
{
x ∈M(3,F) : xT = −x

}2
.



16 CHAPTER 1. INTRODUCTION AND EXAMPLES

3. We have

B

 0 a b
−a 0 c
−b −c 0

 ,

 0 a b
−a 0 c
−b −c 0

 = −2
(
a2 + b2 + c2

)

for ∀

 0 a b
−a 0 c
−b −c 0

 of
{
x ∈M(3,F) : xT = −x

}
.

Proposition 1.3.4 1. We have

dim
{
x ∈M(m,F) : xT = −x

}
=
m(m− 1)

2
.

2. The Killing form on the Lie algebra
{
x ∈ M(m,F) : xT = −x

}
is given

by

B(x, y) = (m− 2) tr(xy)

for ∀(x, y) of
{
x ∈M(m,F) : xT = −x

}2
.

3. The Killing form on the Lie algebra
{
x ∈M(3,F) : xT = −x

}
is given by

B

 0 a b
−a 0 c
−b −c 0

 ,

 0 p q
−p 0 r
−q −r 0


= tr

 0 a b
−a 0 c
−b −c 0

 0 p q
−p 0 r
−q −r 0

 = −2(ap+ bq + cr)

for ∀

 0 a b
−a 0 c
−b −c 0

 ,

 0 p q
−p 0 r
−q −r 0

 of
{
x ∈M(3,F) : xT = −x

}2
.

Proof. The set
{
eij − eji

}
i<j

is a basis of
{
x ∈M(m,F) : xT = −x

}
. Suppose

that x is an element of
{
x ∈M(m,F) : xT = −x

}
.

B(x, x) =
∑
i<j

(
(adx)2(eij − eji)

)
ij

=
∑
i<j

(
x2(eij − eji)− 2x(eij − eji)x+ (eij − eji)x2

)
ij

=
∑
i<j

(
(x2)ii + 2x2

ij + (x2)jj
)

= (m− 1) trx2 + 2
∑
i<j

x2
ij ,
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where

2
∑
i<j

x2
ij =

∑
i<j

x2
ij +

∑
j<i

x2
ji =

∑
i<j

x2
ij +

∑
j<i

x2
ij

=
∑
i6=j

x2
ij =

m∑
i,j=1

x2
ij = −

m∑
i,j=1

xijxji = − trx2.

B(x, x) = (m− 2) trx2.

B(x, y) = (m− 2) tr(xy)

for ∀(x, y) of
{
x ∈M(m,F) : xT = −x

}2
.

Example 1.3.1 1. The Killing form on the Lie algebra
{
x ∈ M(2,F) : xT =

−x
}

is not the restriction of the Killing form on the Lie algebra
{
x ∈

M(2,F) : trx = 0
}

.

2. The Lie algebra
{
x ∈ M(2,F) : xT = −x

}
is not an ideal of the Lie

algebra
{
x ∈M(2,F) : trx = 0

}
.

Proof. We have

BM(2,F)

((
0 1
−1 0

)
,

(
0 1
−1 0

))
= 4 tr

(
0 1
−1 0

)2

= −4 tr

(
1 0
0 1

)
= −8 6= 0.

Proposition 1.3.5
The Killing form on the Lie algebra

L =

{
x ∈M(2m,F) : xT

(
0 1
−1 0

)
+

(
0 1
−1 0

)
x = 0

}
is given by

B(x, y) = 2(m+ 1) tr(xy)

for ∀(x, y) of L2.
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Proof. Suppose that x is an element of L.

F =

m∑
i,j=1

(
x2(eij − em+j,m+i)

)
ij

+

m∑
i=1

(x2ei,m+i)i,m+i +
∑

1≤i<j≤m

(
x2(ei,m+j + ej,m+i)

)
i,m+j

+

m∑
i=1

(x2em+i,i)m+i,i +
∑

1≤i<j≤m

(
x2(em+i,j + em+j,i)

)
m+i,j

=

m∑
i,j=1

(x2eij)ij +

m∑
i=1

(
(x2ei,m+i)i,m+i + (x2em+i,i)m+i,i

)
+

∑
1≤i<j≤m

(
(x2ei,m+j)i,m+j + (x2em+i,j)m+i,j

)
=

m∑
i,j=1

(x2)ii +
∑

1≤i≤j≤m

(
(x2)ii + (x2)m+i,m+i

)
= m tr(x2

11 + x12x21) +
∑

1≤i≤j≤m

(
(x2)ii + (x2)m+i,m+i

)
.

H =

m∑
i,j=1

(eijx
2)ij +

m∑
i=1

(
(ei,m+ix

2)i,m+i + (em+i,ix
2)m+i,i

)
+

∑
1≤i<j≤m

(
(ei,m+jx

2)i,m+j + (em+i,jx
2)m+i,j

)
=

m∑
i,j=1

(x2)jj +
∑

1≤i≤j≤m

(
(x2)m+j,m+j + (x2)jj

)
= m tr(x2

11 + x12x21) +
∑

1≤i≤j≤m

(
(x2)m+j,m+j + (x2)jj

)
.

tr(x2) = tr(x2
11 + x12x21) + tr(x21x12 + x2

22)

= 2 tr(x2
11 + x12x21).

F +H = m tr(x2) + (m+ 1) tr(x2)

= (2m+ 1) tr(x2).
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G =

m∑
i,j=1

(xiixjj − xi,m+jxm+i,j)

+

m∑
i=1

xiixm+i,m+i +
∑

1≤i<j≤m

(xiixm+j,m+j + xijxm+i,m+j)

+

m∑
i=1

xm+i,m+ixii +
∑

1≤i<j≤m

(xm+i,m+ixjj + xm+i,m+jxij)

= −
m∑

i,j=1

xijxji −
m∑

i,j=1

(x12)ij(x21)ij = − tr(x2
11 + x12x21).

B(x, x) = F +H − 2G = 2(m+ 1) tr(x2).

B(x, y) = 2(m+ 1) tr(xy)

for ∀(x, y) of L2.

Proposition 1.3.6
The Killing form on M(m,F) is degenerate for ∀m ≥ 1.

Proof.
B(x, 1) = 2m trx− 2(trx)(tr 1) = 0

for ∀x of M(m,F).

1.4 Lie Algebras over Fields of Characteristic
Two

Suppose that F is a field of characteristic 2.

Proposition 1.4.1 1. We have

dim
{
x ∈M(m,F) : xT = −x

}
=
m(m+ 1)

2
.

2. The Killing form on the Lie algebra
{
x ∈ M(m,F) : xT = −x

}
is given

by
B(x, y) = m tr(xy)− (trx)(tr y)

for ∀(x, y) of
{
x ∈M(m,F) : xT = −x

}2
.

Proof. The set
{
eij+eji

}
i<j
∪
{
eii
}m
i=1

is a basis of
{
x ∈M(m,F) : xT = −x

}
.

Suppose that (x, y) is an element of
{
x ∈M(m,F) : xT = −x

}2
.

B(x, y) = tr
(
(adx)(ad y)

)
=
∑
i<j

(
(adx)(ad y)(eij + eji)

)
ij

+

m∑
i=1

(
(adx)(ad y)(eii)

)
ii
.
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∑
i<j

(
(adx)(ad y)(eij + eji)

)
ij

=
∑
i<j

(
xy(eij + eji)− x(eij + eji)y − y(eij + eji)x+ (eij + eji)yx

)
ij

=
∑
i<j

(
(xy)ii − xiiyjj − yiixjj + (yx)jj

)
=
∑
i 6=j

(
(xy)ii − xiiyjj

)
= m tr(xy)− (trx)(tr y).

m∑
i=1

(
(adx)(ad y)(eii)

)
ii

=

m∑
i=1

(xyeii − xeiiy − yeiix+ eiiyx)ii

=

m∑
i=1

(
(xy)ii + (yx)ii

)
= 0.

B(x, y) = m tr(xy)− (trx)(tr y).

1.5 Lie Algebras over Fields of Characteristic
Zero

Suppose that F is a field of characteristic 0.

Theorem 1.5.1
The Killing form on

{
x ∈M(m,F) : trx = 0

}
is nondegenerate.

Proof. We may assume that m ≥ 1. Suppose that x is an element of
{
x ∈

M(m,F) : trx = 0
}

such that
[
y 7→ B(x, y)

]
= 0.

xij = tr(xeji) = 0

for ∀i 6= ∀j and we have

x11 = · · · = xmm =
trx

m
= 0

since
xii − xi+1,i+1 = tr

(
x(eii − ei+1,i+1)

)
= 0

for ∀i < m.

Theorem 1.5.2
The Killing form on

{
x ∈M(m,F) : xT = −x

}
is nondegenerate for ∀m ≥ 3.

Proof. Suppose that x is an element of
{
x ∈ M(m,F) : xT = −x

}
such that[

y 7→ B(x, y)
]

= 0.

xij =
xij − xji

2
= −

tr
(
x(eij − eji)

)
2

= 0

for ∀i < ∀j.
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Theorem 1.5.3
The Killing form on

L =

{
x ∈M(2m,F) : xT

(
0 1
−1 0

)
+

(
0 1
−1 0

)
x = 0

}
is nondegenerate.

Proof. Suppose that x is an element of L such that
[
y 7→ B(x, y)

]
= 0.

xij =
xij − xm+j,m+i

2
=

tr
(
x(eji − em+i,m+j)

)
2

= 0

xi,m+j =
xj,m+i + xi,m+j

2
=

tr
(
x(em+i,j + em+j,i)

)
2

= 0

xm+i,j =
xm+j,i + xm+i,j

2
=

tr
(
x(ei,m+j + ej,m+i)

)
2

= 0

for ∀(i, j) of
{

1, . . . ,m
}2

.
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Chapter 2

Fundamental Theorems

2.1 Engel’s Theorem

Definition 2.1.1
A Lie algebra L is said to be nilpotent if eventually

L, [L,L],
[
L, [L,L]

]
, . . . , {0}, . . . .

Proposition 2.1.1
A Lie algebra L is nilpotent if and only if{

(adx1) · · · (adxn) : (xk)nk=1 ∈ Ln
}

= {0}

for some n.

Proposition 2.1.2
Suppose that L is a nilpotent Lie algebra. Then the set adL is a subset of{

x ∈ homL : x is nilpotent
}

=
{
x ∈ homL : xn = 0 for some n

}
.

Proposition 2.1.3
Suppose that V0 is a subspace of a vector space V .

1.
{
ek + V0

}n
k=n0+1

is a basis of V/V0 if
{
ek
}n
k=1

is a basis of V such that{
ek
}n0

k=1
is a basis of V0.

2.
{
ek
}n
k=1

is a basis of V if
{
ek
}n0

k=1
is a basis of V0 and

{
ek + V0

}n
k=n0+1

is a basis of V/V0.

Proof. Suppose that V is a vector space over a field F.

1. Suppose that
{
ek
}n
k=1

is a basis of V such that
{
ek
}n0

k=1
is a basis of V0.

Suppose that
{
νk
}n
k=n0+1

is a subset of F such that

n∑
k=n0+1

νk(ek + V0) = 0.

23
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The vector
n∑

k=n0+1

νkek

belongs to V0 and we have
{
νk
}n
k=n0+1

= {0}.

Suppose that v + V0 is an arbitrary vector of V/V0. There exists a subset{
νk
}n
k=1

of F such that

v =

n∑
k=1

νkek

and we have

v + V0 =

n∑
k=n0+1

νk(ek + V0).

2. Suppose that
{
ek
}n0

k=1
is a basis of V0 and

{
ek + V0

}n
k=n0+1

is a basis of

V/V0.

Suppose that
{
νk
}n
k=1

is a subset of F such that

n∑
k=1

νkek = 0.

We have
n∑

k=n0+1

νk(ek + V0) = 0

and
{
νk
}n
k=n0+1

= {0}. We have

n0∑
k=1

νkek = 0

and
{
νk
}n0

k=1
= {0}.

Suppose that v is an arbitrary vector of V . There exists a subset
{
νk
}n
k=n0+1

of F such that

v + V0 =

n∑
k=n0+1

νk(ek + V0).

There exists a subset
{
νk
}n0

k=1
of F such that

v −
n∑

k=n0+1

νkek =

n0∑
k=1

νkek

and we have

v =

n∑
k=1

νkek.
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Definition 2.1.2
Suppose that x is a linear mapping on a vector space V and let V0 be an invariant
subspace for x.

1. We define a linear mapping xV0
on V0 by

xV0
(v0) = x(v0).

2. We define a linear mapping xV/V0
on V/V0 by

xV/V0
(v + V0) = x(v) + V0.

Proposition 2.1.4
Suppose that x is a linear mapping on a vector space V and let V0 be an invariant
subspace for x.

V = V0 ⊕ V/V0, x =

(
xV0

∗
0 xV/V0

)
.

Proposition 2.1.5
Suppose that V0 is a subspace of a vector space V .

1. The set {
x ∈ homV : V0 is an invariant subspace for x

}
(2.1)

is a subalgebra of the algebra homV .

2. The mapping{
x ∈ homV : V0 is an invariant subspace for x

}
→ homV0

is a homomorphism of algebras.

3. The mapping{
x ∈ homV : V0 is an invariant subspace for x

}
→ homV/V0

is a homomorphism of algebras.

Corollary 2.1.1
Suppose that ρ is a representation of a Lie algebra L on a vector space V and
let V0 be an invariant subspace for ρ(L).

1. The mapping x 7→ ρ(x) is a homomorphism of L into the Lie algebra (2.1).

2. The mapping

x 7→ ρV0(x) =
[
v 7→ ρ(x)v

]
is a representation of L on V0.
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3. The mapping

x 7→ ρV/V0
(x) =

[
v + V0 7→ ρ(x)v + V0

]
is a representation of L on V/V0.

4.

ρ(x) =

(
ρV0

(x) ∗
0 ρV/V0

(x)

)
for ∀x.

Corollary 2.1.2
Suppose that L0 is a Lie subalgebra of a Lie algebra L.

x0 7→ adL/L0
x0 =

[
x+ L0 7→ (adx0)(x) + L0

]
is a representation of L0 on L/L0.

Proposition 2.1.6
Suppose that L0 is a Lie subalgebra of a Lie algebra L.

Proposition 2.1.7
kerx 6= {0} if x is a nilpotent linear mapping on a vector space V 6= {0}.

Proof. We may assume that x 6= 0. We define n = min{n : xn = 0 } > 1. There
exists a vector v such that xn−1v 6= 0. We have x(xn−1v) = xnv = 0.

Proposition 2.1.8
adx is nilpotent if x is a nilpotent linear mapping on a vector space.

Proof. We define n = min{n : xn = 0 }.

(adx)2n =

2n∑
k=0

(
2n

k

)
L(x)k(−1)2n−kR(x)2n−k = 0.

Theorem 2.1.1
Suppose that V 6= {0} is a vector space over a field F and let L be a finite
dimensional Lie subalgebra of homV . Assume that x is nilpotent for ∀x of L.⋂

x∈L
kerx 6= {0}.

Proof. Suppose that dimL = 0.⋂
x∈L

kerx = V 6= {0}.

Suppose that dimL > 0 and let L(n) be the set{
a Lie subalgebra of L of dimension n

}
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for ∀n. We remark that the set L(0) = {{0}} is not empty. We define

n = max
{
n ∈ {0, . . . ,dimL− 1} : the set L(n) is not empty

}
and let Ln be an element of L(n). We have

Vn =
⋂

xn∈Ln

kerxn 6= {0}

by the induction hypothesis. We remark that the linear mapping adL/Ln xn is
nilpotent for ∀xn of Ln by Proposition 2.1.8. We have⋂

xn∈Ln

ker(adL/Ln xn) 6= {0}

by the induction hypothesis.

x+ Ln ∈
⋂

xn∈Ln

ker(adL/Ln xn) \ {0} ⇔ x ∈
⋂

xn∈Ln

(adL xn)−1(Ln) \ Ln.

Suppose that x is an element of⋂
xn∈Ln

(adL xn)−1(Ln) \ Ln.

The set Ln + Fx belongs to L(n+1). We have L = Ln + Fx.

xnxVn =
(
(adxn)(x) + xxn

)
Vn = {0}

for ∀xn of Ln. The subspace Vn is invariant for x.⋂
x∈L

kerx = kerx ∩ Vn 6= {0}

by Proposition 2.1.7.

Engel’s Theorem
Suppose that V is a finite dimensional vector space over a field F and let f be a
representation of a Lie algebra L on V such that each f(x) is nilpotent. There
exists a basis such that the matrix representation of each f(x) is strictly upper
triangular.

Proof. The proof is by induction on dimV . We may assume that dimV > 0.⋂
x∈L

ker f(x) 6= {0}

by Theorem 2.1.1 and let e1 be an element of⋂
x∈L

ker f(x) \ {0}.
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We have f(L)(e1) = {0}. A subspace Fe1 is invariant for f .

f(x) =

(
0 ∗
0 fV/Fe1(x)

)
for ∀x and each fV/Fe1(x) is nilpotent.

Corollary 2.1.3
A finite dimensional Lie algebra is nilpotent if and only if each adx is nilpotent.

Proof. Suppose that each adx is nilpotent. There exists a basis such that the
matrix representation of each adx is strictly upper triangular by Engel’s theo-
rem. We write n for the dimension of the Lie algebra. We have{

(adx1) · · · (adxn) : (xk)nk=1

}
= {0}.

Corollary 2.1.4
Suppose that V is a finite dimensional vector space. A Lie subalgebra L of
homV is nilpotent if each element of L is a nilpotent linear mapping on V .

Proof. Suppose that x is an element of L. The element adhomV x is a nilpotent
linear mapping on homV by Proposition 2.1.8 and the subspace L is invariant
for adhomV x. The element adL x is a nilpotent linear mapping on L. The finite
dimensional Lie algebra L is nilpotent by Corollary 2.1.3.

Corollary 2.1.5
Suppose that F is a field. The set of strictly upper triangular matrices{

x ∈M(m,F) : xij = 0 for ∀i ≥ ∀j
}

is a nilpotent Lie subalgebra of M(m,F) for ∀m.

Proof. By Proposition 1.2.8 and Corollary 2.1.4.

Corollary 2.1.6
Suppose that L is a finite dimensional nilpotent Lie algebra. There exists a
basis of L such that the matrix representation of each adx is strictly upper
triangular.

Corollary 2.1.7
The Killing form of a finite dimensional nilpotent Lie algebra is trivial.

Corollary 2.1.8
Suppose that V is a finite dimensional vector space over a field F and let x
be a nilpotent element of homV . There exists a basis such that the matrix
representation of x is strictly upper triangular.

Proof. The subspace Fx is a Lie subalgebra and by Engel’s theorem.
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2.2 Lie’s Theorem

Definition 2.2.1
A Lie algebra L is said to be solvable if eventually

L, [L,L],
[
[L,L], [L,L]

]
, . . . , {0}, . . . .

Proposition 2.2.1
A nilpotent Lie algebra is solvable.

Suppose that ρ is a representation of a Lie algebra L on a vector space V .
Suppose that L0 is an ideal of L and let f0 be a linear functional on L0. We
define

Vf0 =
{
v : ρ(x0)v = f0(x0)v for ∀x0

}
.

Suppose that (x, v) is an element of L× Vf0 .

Proposition 2.2.2

ρ(x0)ρ(x)nv =

n∑
k=0

(−1)k
(
n

k

)
f0

(
(adx)kx0

)
ρ(x)n−kv

for ∀(x0, n) of L0 × Z+.

Proof.

ρ(x0)ρ(x)nv =
([
ρ(x0), ρ(x)

]
+ ρ(x)ρ(x0)

)
ρ(x)n−1(x)v

= ρ
(
[x0, x]

)
ρ(x)n−1v + ρ(x)ρ(x0)ρ(x)n−1(x)v

=

n−1∑
k=0

(−1)k
(
n− 1

k

)(
f0

(
(adx)k[x0, x]

)
+ ρ(x)f0

(
(adx)kx0

))
ρ(x)n−1−kv

=

n−1∑
k=0

(−1)k
(
n− 1

k

)(
−f0

(
(adx)k+1x0

)
+ ρ(x)f0

(
(adx)kx0

))
ρ(x)n−1−kv

=

n∑
k=1

(−1)k
(
n− 1

k − 1

)
f0

(
(adx)kx0

)
ρ(x)n−kv

+

n−1∑
k=0

(−1)k
(
n− 1

k

)
f0

(
(adx)kx0

)
ρ(x)n−kv

=

n∑
k=0

(−1)k
(
n

k

)
f0

(
(adx)kx0

)
ρ(x)n−kv.

Definition 2.2.2
We write Un for the subspace generated by

{
v, ρ(x)v, . . . , ρ(x)n−1v

}
for ∀n.

Proposition 2.2.3
Suppose that dimV < ∞ and let n = min{n : Un = Un+1 }. We have
nf0

(
(adx)x0

)
= 0 for ∀x0 of L0.
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Proof. We have dimUn = n.

ρ(x0)
(
v, ρ(x)v, . . . , ρ(x)n−1v

)
=
(
v, ρ(x)v, . . . , ρ(x)n−1v

)
∑

1≤i≤j≤n

(−1)j−i
(
j − 1

j − i

)
f0

(
(adx)j−ix0

)
eij

=
(
v, ρ(x)v, . . . , ρ(x)n−1v

)
(
f0(x0) +

∑
1≤i<j≤n

(−1)j−i
(
j − 1

j − i

)
f0

(
(adx)j−ix0

)
eij

)
(2.2)

by Proposition 2.2.2. We define A(x) by

ρ(x)
(
v, ρ(x)v, . . . , ρ(x)n−1v

)
=
(
v, ρ(x)v, . . . , ρ(x)n−1v

)
A(x)

and A(x0, x) by

ρ(x0)
(
v, ρ(x)v, . . . , ρ(x)n−1v

)
=
(
v, ρ(x)v, . . . , ρ(x)n−1v

)
A(x0, x).

nf0

(
(adx)x0

)
= trA

(
(adx)x0, x

)
= tr

((
adA(x)

)
A(x0, x)

)
= 0

by the equation (2.2).

Proposition 2.2.4
Suppose that dimV <∞ and the underlying field is of characteristic 0.

Vf0 =
{
v : ρ(x0)v = f0(x0)v for ∀x0

}
is an invariant subspace for ρ.

Proof. We may assume that Vf0 6= {0}. Suppose that (x, v) is an element of
L× Vf0 \ {0}.

n = min{n : Un = Un+1 } ≥ 1.

Suppose that (x, x0) is an arbitrary element of L× L0.

f0

(
(adx)x0) = 0

by Proposition 2.2.3.

ρ(x0)ρ(x)v = f0(x0)ρ(x)v − f0

(
(adx)x0

)
v

= f0(x0)ρ(x)v

by Proposition 2.2.2 and the subspace Vf0 is invariant for ρ.
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Theorem 2.2.1
Suppose that ρ is a representation of a finite dimensional solvable Lie algebra
over an algebraically closed field of characteristic 0 on a finite dimensional vector
space V 6= {0}. There exists a linear functional f such that

Vf =
{
v : ρ(x)v = f(x)v for ∀x

}
6= {0}.

Proof. We write n for the dimension of the Lie algebra L and the proof is by
induction on n. Suppose that n > 0. There exists a subspace L0 of dimension
n − 1 containing [L,L]. The subspace L0 is a solvable ideal. There exists a
linear functional f0 on L0 such that

Vf0 =
{
v : ρ(x0)v = f0(x0)v for ∀x0

}
6= {0}

by the induction hypothesis. The subspace Vf0 is invariant for ρ by Proposition
2.2.4.

Suppose that x is an element of L \ L0. The linear mapping ρVf0 (x) has an
eigenvalue ν since the underlying field is algebraically closed. Suppose that v is
an element of ker

(
ν − ρVf0 (x)

)
\ {0}. There exists a unique linear functional f

extending f0 such that f(x) = ν. The vector v belongs to Vf .

Lie’s Theorem
Suppose that ρ is a representation of a solvable Lie algebra over an algebraically
closed field of characteristic 0 on a finite dimensional vector space. There exists
a basis such that the matrix representation of each ρ(x) is upper triangular.

Proof. We write n for the dimension of the vector space V and the proof is by
induction on n. Suppose that n > 0. There exists a linear functional f such
that

Vf =
{
v : ρ(x)v = f(x)v for ∀x

}
6= {0}

by Theorem 2.2.1.
We write F for the underlying field and let e1 be a vector of Vf \ {0}. The

subspace Fe1 is invariant for ρ. There exists a basis
{
ek + Fe1

}n
k=2

such that
the matrix representation of each ρV/Fe1(x) is upper triangular by the induction
hypothesis.

ρ(x) =

(
f(x) ∗

0 ρV/Fe1(x)

)
for ∀x.

Proposition 2.2.5
Suppose that R1 is a commutative ring with ideneity and let R2 be a subring
with identity of R1. The ring R1 is a commutative algebra with identity over
R2.

Proof. The ringR1 is a unital module overR2 such that (ν2ν11)ν12 = ν2(ν11ν12) =
ν11(ν2ν12) for ∀(ν11, ν12, ν2) of R2

1 ×R2.
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Suppose that R2 is a commutative ring with identity and let R1 be a com-
mutative algebra with identity over R2.

Proposition 2.2.6
A unital module over R1 is a unital module over R2.

Proof. Suppose that X is a unital module over R1.
Suppose that (ν2, x1, x2) is an arbitrary element of R2 ×X2. We have

ν2(x1 + x2) = (ν21R1
)(x1 + x2)

= (ν21R1
)x1 + (ν21R1

)x2

= ν2x1 + ν2x2.

Suppose that (ν21, ν22, x) is an arbitrary element of R2
2 ×X. We have

(ν21 + ν22)x =
(
(ν21 + ν22)1R1

)
x

= (ν211R1
+ ν221R1

)x

= (ν211R1
)x+ (ν221R1

)x

= ν21x+ ν22x

and we have

(ν21ν22)x =
(
(ν21ν22)1R1

)
x

=
(
(ν211R1)(ν221R1)

)
x

= (ν211R1)
(
(ν221R1)x

)
= ν21(ν22x).

Suppose that x is an arbitrary element of X. We have

1R2x = (1R21R1)x

= 1R1x

= x.

Suppose that X1 is a unital module over R1 and let X2 be a unital module
over R2.

Proposition 2.2.7
The tensor product X1 ⊗X2 is a compatible unital module over R1.

Proof. Suppose that ν1 is an element of R1. A mapping

X1 ×X2 → X1 ⊗X2, (x1, x2) 7→ (ν1x1)⊗ x2

is bilinear over R2 since(
ν1(ν2x1)

)
⊗ x2 =

(
ν2(ν1x1)

)
⊗ x2 = ν2

(
(ν1x1)⊗ x2

)
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for ∀ν2 of R2.
x1 ⊗ x2 7→ (ν1x1)⊗ x2

defines a unique homomorphism over R2 on X1 ⊗X2. We define

ν1

n∑
k=1

x1k ⊗ x2k =

n∑
k=1

(ν1x1k)⊗ x2k

for ∀ν1 of R1 and for

∀x =

n∑
k=1

x1k ⊗ x2k

of X1 ⊗X2. Suppose that

(ν11, ν12, x =

n∑
k=1

x1k ⊗ x2k)

is an arbitrary element of R2
1 × (X1 ⊗X2). We have

(ν11 + ν12)x =

n∑
k=1

(
(ν11 + ν12)x1k

)
⊗ x2k

=

n∑
k=1

(ν11x1k)⊗ x2k +

n∑
k=1

(ν12x1k)⊗ x2k

= ν11x+ ν12x

and we have

(ν11ν12)x =

n∑
k=1

(
(ν11ν12)x1k

)
⊗ x2k

= ν11

n∑
k=1

(ν12x1k)⊗ x2k

= ν11(ν12x).

We have

1R1x =

n∑
k=1

(1R1x1k)⊗ x2k = x.

The tensor product X1 ⊗X2 is a unital module over R1.
Suppose that ν2 is an arbitrary element of R2. We have

ν2x =

n∑
k=1

(ν2x1k)⊗ x2k =

n∑
k=1

(
(ν21R1

)x1k

)
⊗ x2k = (ν21R1

)x.

Proposition 2.2.8
Suppose that X and Y are unital modules over R1. A homomorphism over R1

of X into Y is a homomorphism over R2.
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Proof. Suppose that f is a homomorphism over R1 of X into Y and let (ν2, x)
be an arbitrary element of R2 ×X. We have

f(ν2x) = f
(
(ν21R1)x

)
= (ν21R1)f(x)

= ν2f(x).

Proposition 2.2.9
Suppose that R is a commutative ring with identity and let (Xk)nk=1 be a finite
sequence of unital modules over R. Suppose that Y is a unital module over
R. The unital module hom(

⊗n
k=1Xk, Y ) is the set of multilinear mapping of⊕n

k=1Xk into Y . ⊕n
k=1Xk

��

// Y

⊗n
k=1Xk

;;

Theorem 2.2.2
We have homR1

(R1 ⊗X2, X1) = homR2
(X2, X1).

X2

��

// X1

R1 ⊗X2

::

Proof. By Theorem of 487 (cf. Algebra).

Suppose that Y1 is a unital module over R1 and let Y2 be a unital module
over R2.

Corollary 2.2.1
The mapping

homR2(X2, Y2)→ homR1(R1 ⊗X2, R1 ⊗ Y2), f 7→
[
1⊗ x 7→ 1⊗ f(x)

]
is a homomorphism over R2.

X2 −−−−→ Y2y y
R1 ⊗X2 −−−−→ R1 ⊗ Y2

Corollary 2.2.2
Suppose that Y is a unital module over R1 and let (Xk)nk=1 be a finite sequence
of unital modules over R2. We have

homR1
(

n⊗
k=1

R1 ⊗Xk, Y ) = homR2
(

n⊗
k=1

Xk, Y ).
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⊗n
k=1Xk

��

// Y

⊗n
k=1R1 ⊗Xk

99

Proof. We remark that we have

R1 ⊗
n⊗
k=1

Xk =

n⊗
k=1

R1 ⊗Xk

by Proposition of 425 (cf. Algebra).

Corollary 2.2.3 ⊗n
k=1Xk

��

��

⊕n
k=1Xk

��

33

!!

⊗n
k=1Xk ⊗R1

yy⊕n
k=1Xk ⊗R1

33

// Y

Proof. We remark that we have

R1 ⊗
n⊕
k=1

Xk =

n⊕
k=1

R1 ⊗Xk

by Proposition of 436 (cf. Algebra). Suppose that f is a multilinear mapping
of
⊕n

k=1Xk into Y . We have

f(

n⊕
k=1

xk ⊗ 1) = f(

n⊕
k=1

xk).

Corollary 2.2.4
Suppose that Y is a unital module over R2. The mapping

homR2(

n⊗
k=1

Xk, Y )→ homR1(

n⊗
k=1

Xk ⊗R1, Y ⊗R1),

f 7→
[ n⊗
k=1

xk ⊗ 1 7→ f(

n⊗
k=1

xk)⊗ 1
]
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is a homomorphism over R2.⊗n
k=1Xk −−−−→ Yy y⊗n

k=1Xk ⊗R1 −−−−→ Y ⊗R1

Corollary 2.2.5 ⊗n
k=1Xk

ww

��

⊕n
k=1Xk

��

33

// Y

��

⊗n
k=1Xk ⊗R1

ww⊕n
k=1Xk ⊗R1

33

// Y ⊗R1

Proposition 2.2.10
Suppose that f1 is a homomorphism over R1 of X1 into Y1 and let f2 be a
homomorphism over R2 of X2 into Y2. A homomorphism over R2

X = X1 ⊗X2 → Y = Y1 ⊗ Y2, x 7→ f(x) = (f1 ⊗ f2)(x)

is a homomorphism over R1.

Proof. We have

f(ν1x) = f
( n∑
k=1

(ν1x1k)⊗ x2k

)
=

n∑
k=1

f1(ν1x1k)⊗ f2(x2k)

=

n∑
k=1

(
ν1f1(x1k)

)
⊗ f2(x2k)

= ν1

n∑
k=1

f1(x1k)⊗ f2(x2k)

= ν1f(x)

for ∀(ν1, x =
∑n
k=1 x1k ⊗ x2k) of R1 ×X.

Suppose that V is a vector space over a field F and let E be an extension
field of F.
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Proposition 2.2.11
We have the following.

1. The set V is a subspace over F of E⊗ V and we have

E⊗ V = 〈V 〉E.

2. A basis of V over F is a basis of E⊗ V over E and we have

dimE(E⊗ V ) = dimF V.

Proof. 1. The vector space V = F ⊗ V is a subspace of E ⊗ V since F is a
subspace of E.

2. Suppose that Λ is a basis of V . We have

E⊗ V = E⊗ F⊕Λ

= (E⊗ F)⊕Λ

= E⊕Λ

by Proposition of 436 (cf. Algebra).

Proposition 2.2.12
A Lie algebra over R1 is a Lie algebra over R2.

Suppose that X2 is a Lie algebra over R2. We define the bilinear mapping

[ n1∑
k1=1

ν1k1 ⊗ x1k1 ,

n2∑
k2=1

ν2k2 ⊗ x2k2

]
=

n1∑
k1=1

n2∑
k2=1

ν1k1ν2k2 ⊗
[
x1k1 , x2k2

]
(2.3)

for ∀(x1, x2) = (
∑n1

k1=1 ν1k1⊗x1k1 ,
∑n2

k2=1 ν2k2⊗x2k2) of R1⊗X⊕2
2 by Corollary

2.2.5.
X⊗2

2

xx

��

X⊗2
2

��

33

// X2

��

R1 ⊗X⊗2
2

xx
R1 ⊗X⊕2

2

33

// R1 ⊗X2

Proposition 2.2.13
The bilinear mapping (2.3) satisfies the Jacobi identity.
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Proof. Suppose that

(x1, x2, x3) = (

n1∑
k1=1

ν1k1 ⊗ x1k1 ,

n2∑
k2=1

ν2k2 ⊗ x1k2 ,

n3∑
k3=1

ν3k3 ⊗ x3k3)

is an arbitrary element of R1 ⊗X⊕3
2 . We have

[
x1, [x2, x3]

]
+
[
x2, [x3, x1]

]
+
[
x3, [x1, x2]

]
=

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

ν1k1ν2k2ν3k3

⊗
([
x1k1 , [x2k2 , x3k3 ]

]
+
[
x2k2 , [x3k3 , x1k1 ]

]
+
[
x3k3 , [x1k1 , x2k2 ]

])
= 0.

Theorem 2.2.3
The unital module R1 ⊗X2 is a Lie algebra.

Proof. Suppose that x =
∑n
k=1 νk ⊗ xk is an arbitrary element of R1 ⊗X2. We

have

[x, x] =

n∑
i,j=1

νiνj ⊗ [xi, xj ] = 0.

Suppose that X1 is a Lie algebra over R1.

Proposition 2.2.14
Suppose that R1 ⊗X2 is a Lie algebra. We have the following.

1. The mapping

X2 → R1 ⊗X2, x 7→ 1⊗ x (2.4)

is a homomorphism of Lie algebras.

2. We have homR1(R1 ⊗X2, X1) = homR2(X2, X1).

X2

��

// X1

R1 ⊗X2

::

Proof. The set homR1
(R1 ⊗ X2, X1) is contained in homR2

(X2, X1) since the
mapping (2.4) is a homomorphism of Lie algebras. Suppose that f is an element
of homR2

(X2, X1). We have

f
(
[x1, x2]

)
=

n1∑
k1=1

n2∑
k2=1

ν1k1ν2k2f
(
[x1k1 , x2k2 ]

)
=

n1∑
k1=1

n2∑
k2=1

ν1k1ν2k2

[
f(x1k1), f(x2k2)

]
=
[
f(

n1∑
k1=1

ν1k1 ⊗ x1k1), f(

n2∑
k2=1

ν2k2 ⊗ x2k2)
]

=
[
f(x1), f(x2)

]
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for ∀(x1, x2) = (
∑n1

k1=1 ν1k1 ⊗ x1k1 ,
∑n2

k2=1 ν2k2 ⊗ x2k2) of R1 ⊗X⊕2
2 .

Proposition 2.2.15
An algebra over a commutative ring with identity is a Lie algebra.

Proposition 2.2.16
An algebra over R1 is an algebra over R2.

Proof. By Proposition 2.2.6.

Suppose that X1 is an algebra over R1 and let X2 be an algebra over R2.

Proposition 2.2.17
The tensor product X1 ⊗X2 is a compatible algebra over R1.

Corollary 2.2.6
The module R1 ⊗X2 is a Lie algebra.

Proof. We have

[x1, x2] =

n1∑
k1=1

n2∑
k2=1

ν1k1ν2k2 ⊗
[
x1k1 , x2k2

]
=

n1∑
k1=1

n2∑
k2=1

ν1k1ν2k2 ⊗ (x1k1x2k2 − x2k2x1k1)

= x1x2 − x2x1

for ∀(x1, x2) = (
∑n1

k1=1 ν1k1 ⊗ x1k1 ,
∑n2

k2=1 ν2k2 ⊗ x2k2) of R1 ⊗X⊕2
2 .

Proposition 2.2.18
The mapping

X2 → R1 ⊗X2, x 7→ 1⊗ x (2.5)

is a homomorphism of algebras.

Theorem 2.2.4
We have homR1

(R1 ⊗X2, X1) = homR2
(X2, X1).

X2

��

// X1

R1 ⊗X2

::

Proof. The set homR1
(R1 ⊗ X2, X1) is contained in homR2

(X2, X1) since the
mapping (2.5) is a homomorphism of algebras. Suppose that f is an element of
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homR2(X2, X1). We have

f(x1x2) =

n1∑
k1=1

n2∑
k2=1

ν1k1ν2k2f(x1k1x2k2)

=

n1∑
k1=1

n2∑
k2=1

ν1k1ν2k2f(x1k1)f(x2k2)

= f(

n1∑
k1=1

ν1k1 ⊗ x1k1)f(

n2∑
k2=1

ν2k2 ⊗ x2k2)

= f(x1)f(x2)

for ∀(x1, x2) = (
∑n1

k1=1 ν1k1 ⊗ x1k1 ,
∑n2

k2=1 ν2k2 ⊗ x2k2) of R1 ⊗X⊕2
2 .

Proposition 2.2.19
The algebra homV is a subalgebra of hom(E⊗ V ).

V −−−−→ Vy y
E⊗ V −−−−→ E⊗ V

Proof. An element of homV extends uniquely to an element of hom(E ⊗ V )
since hom(E⊗ V ) = hom(V,E⊗ V ) by Theorem 2.2.2.

Corollary 2.2.7
The algebra M(n,F) is a subalgebra of M(n,E) for ∀n.

Fn −−−−→ Fny y
En −−−−→ En

There exists a unique homomorphism of E ⊗ homV into hom(E ⊗ V ) ex-
tending the identity mapping on homV since

hom
(
E⊗ homV,hom(E⊗ V )

)
= hom

(
homV,hom(E⊗ V )

)
by Theorem 2.2.4.

Theorem 2.2.5
We have E⊗ homV = hom(E⊗ V ) provided that V is finite dimensional.

Proof. The set of matrix units is a basis of

hom(E⊗ V ) = M(n,E)

by Corollary 2.2.7.

Fn
eij−−−−→ Fny y

En
eij−−−−→ En
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Corollary 2.2.8
The following diagram commutes provided that V is finite dimensional.

homV
tr−−−−→ Fy y

hom(E⊗ V )
tr−−−−→ E

Suppose that L is a Lie algebra over F.

Proposition 2.2.20
The set hom(L,homV ) is contained in the set hom

(
E⊗ L,hom(E⊗ V )

)
.

L −−−−→ homVy y
E⊗ L −−−−→ hom(E⊗ V )

Proposition 2.2.21
The following diagram commutes.

L
ad−−−−→ homLy y

E⊗ L ad−−−−→ hom(E⊗ L)

Proposition 2.2.22
The following diagram commutes provided that L is finite dimensional.

L⊕2 B−−−−→ Fy y
E⊗ L⊕2 B−−−−→ E

Proposition 2.2.23
Suppose that L1 and L2 are ideals of L. The subspace span[L1, L2] is an ideal
of L.

Proof. We have [
x, [x1, x2]

]
=
[
[x, x1], x2

]
+
[
x1, [x, x2]

]
and

[
x, [x1, x2]

]
belongs to span[L1, L2] for ∀(x, x1, x2) of L× L1 × L2.

Definition 2.2.3
Suppose that S is a subset of L. We define a subspace CS = span[L, S].

Definition 2.2.4
The ideal DL = span[L,L] is called the derived Lie algebra.
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Proposition 2.2.24
Suppose that S1 and S2 are subsets of L. We have

span[S1, S2] = [spanS1, spanS2].

Proposition 2.2.25
We have

(CnL)∞n=0 =
(

spanL, span[L,L], span
[
L, [L,L]

]
, . . .

)
.

Proof. The proof is by induction on n. Suppose that n > 0. We define

(Sn)∞n=0 =
(
L, [L,L],

[
L, [L,L]

]
, . . .

)
.

We have

CnL = span
[
L,Cn−1L

]
= span

[
L, spanSn−1

]
= span

[
L, Sn−1

]
= spanSn.

Corollary 2.2.9
A Lie algebra L is nilpotent if and only if CnL = {0} for some n.

Proposition 2.2.26
We have

(DnL)∞n=0 =
(

spanL, span[L,L], span
[
[L,L], [L,L]

]
, . . .

)
.

Proof. The proof is by induction on n. Suppose that n > 0. We define

(Sn)∞n=0 =
(
L, [L,L],

[
[L,L], [L,L]

]
, . . .

)
.

We have

DnL = span
[
Dn−1L,Dn−1L

]
= span

[
spanSn−1, spanSn−1

]
= span

[
Sn−1, Sn−1

]
= spanSn.

Corollary 2.2.10
A Lie algebra L is solvable if and only if DnL = {0} for some n.

Proposition 2.2.27
The sets CnL and DnL are ideals of L for ∀n.

Proof. By Proposition 2.2.23.
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Proposition 2.2.28
We have Cn(E⊗ L) = E⊗ CnL for ∀n.

Proof. The proof is by induction on n. Suppose that n > 0. We have

Cn(E⊗ L) = span
[
E⊗ L,Cn−1(E⊗ L)

]
= span

[
E⊗ L,E⊗ Cn−1L

]
= span

[
L,Cn−1L

]
= spanCnL

= E⊗ CnL

by the induction hypothesis.

Corollary 2.2.11
The Lie algebra E⊗ L is nilpotent if and only if the Lie algebra L is nilpotent.

Proposition 2.2.29
We have D(E⊗ L) = E⊗DL for ∀n.

Proof. We have

D(E⊗ L) = span[E⊗ L,E⊗ L]

= span[L,L]

= spanDL

= E⊗DL.

Corollary 2.2.12
The Lie algebra E⊗ L is solvable if and only if the Lie algebra L is solvable.

Theorem 2.2.6 (Engel)
A finite dimensional Lie algebra over a field of characteristic 0 is solvable if and
only if the derived Lie algebra is nilpotent.

Proof. We may assume that the underlying field F is algebraically closed. Sup-
pose that L is solvable. We may assume that adL is a Lie subalgebra of the
subalgebra {

x ∈M(n,F) : xij = 0 for ∀i > ∀j
}

by Lie’s theorem. The Lie subalgebra adDL is contained in the subalgebra{
x ∈M(n,F) : xij = 0 for ∀i ≥ ∀j

}
.

The Lie algebra DL is nilpotent by Corollary 2.1.3.
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2.3 Jordan Decomposition of a Linear Mapping

Suppose that V is a finite dimensional vector space over a field F and let x̄
be an element of homV . We write F[x] for the algebra of polynomials in one
indeterminate x over F.

Proposition 2.3.1
The mapping f(x) 7→ f(x̄) is a homomorphism of algebras of F[x] into homV .

Definition 2.3.1
The unique monic polynomial generating the ideal{

f(x) ∈ F[x] : f(x̄) = 0
}
6= {0}

is called the minimal polynomial of x̄.

We write F for the algebraic closure of F and the minimal polynomial of x̄
by

f0(x) =
∏
ν∈F

(x− ν)m(ν).

Proposition 2.3.2
We have

F[x]

F[x]f0(x)
=
{
f(x̄) : f(x) ∈ F[x]

}
.

Proposition 2.3.3
An element x̄ of homV is diagonalisable if and only if

V =
⊕
ν∈F

ker(x̄− ν).

Proof. Suppose that x̄ is diagonalisable and let

{νk}nk=1 =
{
ν ∈ F : ker(x̄− ν) 6= {0}

}
such that #{νk}nk=1 = n. We have

V =

n⊕
k=1

ker(x̄− νk)

=
⊕
ν∈F

ker(x̄− ν).

Suppose that

V =
⊕
ν∈F

ker(x̄− ν)

and let
{νk}nk=1 =

{
ν ∈ F : ker(x̄− ν) 6= {0}

}
such that #{νk}nk=1 = n. We have

V =

n⊕
k=1

ker(x̄− νk).
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Definition 2.3.2

x̄ = S +N

is called a Jordan decomposition if it satisfies the following.

1. An element S of homV is diagonalisable.

2. An element N of homV is nilpotent.

3. We have [S,N ] = 0.

Proposition 2.3.4
Suppose that N is a nilpotent element of homV . We have

(1−N)−1 =
∞∑
n=0

Nn.

Proof. We define m = min{m : Nm = 0 }. We have

(1−N)

∞∑
n=0

Nn = (1−N)
∑
n<m

Nn

= 1−Nm = 1.

Theorem 2.3.1
Suppose that x̄ = S +N is a Jordan decomposition. We have the following.

1. The set
{
ν ∈ F : f0(ν) = 0

}
is contained in F.

2. We have m(ν) = min
{
m : Nm ker(S − ν) = {0}

}
for ∀ν of F.

3. We have ker(S − ν) = ker(x̄− ν)m(ν) for ∀ν of F.

4. We have
V =

⊕
ν∈F

ker(x̄− ν)m(ν)

and the element x̄ has a unique Jordan decomposition x̄ = S +N .

Proof. We have

V =
⊕
ν∈F

ker(S − ν)

by Proposition 2.3.3 and let

{νk}nk=1 =
{
ν ∈ F : ker(S − ν) 6= {0}

}
such that #{νk}nk=1 = n. The subspace ker(S − νk) is invariant for x̄ for ∀k
since x̄ and S commute. We define

mk = min
{
m : Nm ker(S − νk) = {0}

}
= min

{
m : (x̄− νk)m ker(S − νk) = {0}

}
≥ 1
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for ∀k. The minimal polynomial of the restriction of x̄ to the invariant subspace
ker(S − νk) is (x− νk)mk and thus (x− νk)mk divides f0(x) for ∀k. We have

f0(x) =

n∏
k=1

(x− νk)mk

since
n∏
k=1

(x̄− νk)mk = 0.

The subspace ker(S − νk) is contained in ker(x̄ − νk)mk for ∀k. Suppose that
1 ≤ k0 ≤ n and let

v =

n∑
k=1

vk ∈
n⊕
k=1

ker(S − νk) = V

be an element of ker(x̄− νk0)mk0 . We have

0 = (x̄− νk0)mk0 v

=

n∑
k=1

(x̄− νk0)mk0 vk

and

0 = (x̄− νk0)mk0 vk

= (νk − νk0 +N)mk0 vk

for ∀k since the subspace ker(S − νk) is invariant for (x̄ − νk0)mk0 for ∀k. We
have vk = 0 provided that k 6= k0 since νk−νk0 +N is invertible by Proposition
2.3.4. We have ker(S − νk) = ker(x̄− νk)mk for ∀k. Suppose that

v =

n∑
k=1

vk ∈
n⊕
k=1

ker(x̄− νk)mk = V.

We have Sv =
∑n
k=1 νkvk.

Definition 2.3.3
Suppose that S is a subset of a commutative ring R. We have the following.

1. An element d of R is called a common divisor of S if S is a subset of Rd.

2. A common divisor d of S is called a greatest common divisor if d is a
multiple of any common divisor of S.

Proposition 2.3.5
Any subset of a principal ideal domain has a greatest common divisor.
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Proof. Suppose that S is a subset of a principal ideal domain R. There exists
an element d of R such that (S) = Rd. The element d is a common divisor of S
contained in (S).

Proposition 2.3.6
Suppose that S is a subset of a principal ideal domain R.{

a greatest common divisor of S
}

=
{
d ∈ R : Rd = (S)

}
.

Proposition 2.3.7
Suppose that R is a commutative ring with identity and let S be a subset of R.
Suppose that d0 is a greatest common divisor of S.{

a greatest common divisor of S
}

=
{
d ∈ R : Rd = Rd0

}
.

Proposition 2.3.8
Suppose that S is a subset of an integral domain R and let d0 be a greatest
common divisor of S.{

a greatest common divisor of S
}

= R×d0.

Definition 2.3.4
A subset S of an integral domain R is said to be relatively prime if{

a greatest common divisor of S
}

= R×.

Proposition 2.3.9
A subset S of a principal ideal domain R is relatively prime if and only if

R = (S).

Corollary 2.3.1
A subset {x1, . . . , xn} of a principal ideal domain R is relatively prime if and
only if

R = Rx1 + · · ·+Rxn.

Proposition 2.3.10
Suppose that S is a subset of F[x] such that S \ {0} is not empty. There exists
a unique monic greatest common divisor of S.

Proof. There exists a greatest common divisor d(x) of S by Proposition 2.3.5.
We have d(x) 6= 0 since S \ {0} is not empty. We have{

a greatest common divisor of S
}

=
(
F \ {0}

)
d(x)

by Proposition 2.3.8.
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Suppose that the set {
ν ∈ F : f0(ν) = 0

}
is contained in F and let {νk}nk=1 be a subset of F containing the set{

ν ∈ F : f0(ν) = 0
}

such that #{νk}nk=1 = n.
There exists a set {mk}nk=1 of positive integers such that f0(x) divides

f(x) =

n∏
k=1

(x− νk)mk .

Proposition 2.3.11
There exists an element

(
f1(x), . . . , fn(x)

)n
k=1

of

F[x]
f(x)

(x− ν1)m1
× · · · × F[x]

f(x)

(x− νn)mn

such that 1 =
∑n
k=1 fk(x̄).

Proof. We may assume that n ≥ 1. The set{
f(x)

(x− ν1)m1
, . . . ,

f(x)

(x− νn)mn

}
is relatively prime. There exists an element

(
f1(x), . . . , fn(x)

)n
k=1

of

F[x]
f(x)

(x− ν1)m1
× · · · × F[x]

f(x)

(x− νn)mn

such that 1 =
∑n
k=1 fk(x) by Corollary 2.3.1.

Proposition 2.3.12
Suppose that M is a left module over a ring and let Λ be a set. Suppose that
(Pi)i∈Λ is an element of (homM)Λ satisfying the following.

1. The element
(
Pi(x)

)
i∈Λ

belongs to
⊕

i∈ΛM and we have

x =
∑
i∈Λ

Pi(x)

for ∀x.

2. We have Pi ◦ Pj = 0 provided that i 6= j.

We have the following.

1. We have Pi ◦ Pj = δijPi and

Pi(M) =
{
x ∈M : Pi(x) = x

}
for ∀i and ∀j.
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2. We have

M =
⊕
i∈Λ

Pi(M).

Proof. 1. Suppose that x is an element of M . We have Pi(x) = P 2
i (x) since

x = Pi(x) +
∑

j∈Λ\{i}

Pj(x).

2. Suppose that x is an element of M . The element
⊕

i∈Λ Pi(x) belongs to⊕
i∈Λ Pi(M) and x =

∑
i∈Λ Pi(x). Suppose that

⊕
i∈Λ xi is an element of⊕

i∈Λ Pi(M) such that x =
∑
i∈Λ xi = 0. We have

0 = Pi(x)

= Pi(xi)

= xi

for ∀i.

Proposition 2.3.13
We have

V =

n⊕
k=1

ker(x̄− νk)mk

and fi(x̄)fj(x̄) = δijfi(x̄).

Proof. Suppose that i 6= j. The polynomial fi(x)fj(x) belongs to F[x]f(x) since(
fi(x), fj(x)

)
belongs to

F[x]
f(x)

(x− νi)mi
× F[x](x− νi)mi .

We have fi(x̄)fj(x̄) = 0. We have

V =

n⊕
k=1

fk(x̄)V

by Proposition 2.3.12. The subspace fk(x̄)V is contained in ker(x̄ − νk)mk for
∀k since (x̄−νk)mkfk(x̄) = 0. Suppose that 1 ≤ k0 ≤ n and let v be an element
of ker(x̄− νk0)mk0 . We have

v = fk0(x̄)v +
∑
k 6=k0

fk(x̄)v

= fk0(x̄)v

since fk(x) belongs to F[x](x− νk0)mk0 provided that k 6= k0.
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Proposition 2.3.14
We have the following.

1. We have

V =
⊕
ν∈F

ker(x̄− ν)m(ν)

=
⊕
ν∈F

lim
m→∞

ker(x̄− ν)m.

2. We write Pν for the projection of V onto limm→∞ ker(x̄− ν)m for ∀ν. We
have fk(x̄) = Pνk for ∀k.

3. Suppose that ν0 is an element of F and let ν be an element of F \ {ν0}.
The projection Pν belongs to

lim
n→∞

{
f(x̄) : f(x) ∈ F[x](x− ν0)n

}
.

Theorem 2.3.2
The set

{
ν ∈ F : f0(ν) = 0

}
is contained in F if and only if x̄ is Jordan

decomposable.

Proof. We define

S =

n∑
k=1

νkfk(x̄)

=

n∑
k=1

νkPνk

=
∑
ν∈F

νPν

and

N = x̄− S

=

n∑
k=1

(x̄− νk)fk(x̄).

The element S is diagonalisable and we have [S,N ] = 0. We write m =
sup{mk}nk=1. We have

Nm =

n∑
k=1

(x̄− νk)mfk(x̄)

= 0.

Corollary 2.3.2
We have the following.
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1. The element S belongs to

lim
n→∞

{
f(x̄) : f(x) ∈ F[x]xn

}
.

2. The element N belongs to
{
f(x̄) : f(x) ∈ F[x]x

}
.

Corollary 2.3.3
An element x̄ of homV is diagonalisable if and only if x̄ is Jordan decomposable
and the minimal polynomial of x̄ does not have a multiple root.

Proof. We write 1m for the identity of M(m,F) for ∀m. Suppose that

x̄ = diag(ν11m1
, . . . , νn1mn),

where {νk}nk=1 is a subset of F such that #{νk}nk=1 = n and {mk}nk=1 is a subset
of N. The minimal polynomial of x̄ is

(x− ν1) · · · (x− νn).

Suppose that the minimal polynomial of x̄ is

(x− ν1) · · · (x− νn),

where {νk}nk=1 is a subset of F such that #{νk}nk=1 = n. We have

V =

n⊕
k=1

ker(x̄− νk)

by Proposition 2.3.14

Corollary 2.3.4
A restriction of a diagonalisable element of homV to an invariant subspace is
diagonalisable.

Proof. Suppose that x̄ is a diagonalisable element of homV and let V0 be an
invariant subspace. The minimal polynomial of the restriction of the element
x̄ to the invariant subspace V0 divides the minimal polynomial of the element
x̄.

Theorem 2.3.3
A subset S of the set{

a diagonalisable element of homV
}

is simultaneously diagonalisable if and only if [x̄1, x̄2] = 0 for ∀(x̄1, x̄2) of S2.
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Proof. Suppose that [x̄1, x̄2] = 0 for ∀(x̄1, x̄2) of S2. The proof is by induction
on n = dim spanS. Suppose that n > 0 and let {x̄1, . . . , x̄n} be a basis of spanS
contained in S. We have

V =
⊕

(ν1,...,νn−1)∈Fn−1

ker(x̄1 − ν1) ∩ · · · ∩ ker(x̄n−1 − νn−1)

since {x̄1, . . . , x̄n−1} is simultaneously diagonalisable by the induction hypoth-
esis. Suppose that ν = (ν1, . . . , νn−1) is an element of Fn−1. The subspace

Vν = ker(x̄1 − ν1) ∩ · · · ∩ ker(x̄n−1 − νn−1)

is invariant for x̄n since [x̄1, x̄n] = · · · = [x̄n−1, x̄n] = 0. The restriction of x̄n to
Vν is diagonalisable by Corollary 2.3.4. The set {x̄1, . . . , x̄n} is simultaneously
diagonalisable. The set spanS is simultaneously diagonalisable.

Theorem 2.3.4
A mapping f of a finite subset S of F into F extends uniquely to an element
f(x) of F[x] such that deg f(x) < #S = n. We have

f(x) = f(ν1)
x− ν2

ν1 − ν2
· · · x− νn

ν1 − νn
+ · · ·+ f(νn)

x− ν1

νn − ν1
· · · x− νn−1

νn − νn−1
,

where S = {νk}nk=1.

Proof. The proof of uniqueness is by induction on n. Suppose that n > 0.
Suppose that f extends to an element

f(x) = f1(x)(x− ν1) + f(ν1)

such that deg f1(x) < n− 1. We have

f1(x) =
f(ν2)− f(ν1)

ν2 − ν1

x− ν3

ν2 − ν3
· · · x− νn

ν2 − νn
+ · · ·

+
f(νn)− f(ν1)

νn − ν1

x− ν2

νn − ν2
· · · x− νn−1

νn − νn−1

by the induction hypothesis.

Corollary 2.3.5
Suppose that x̄ is a diagonalisable element of homV . We have∏

det(x̄−ν)=0

F =
{
f(x̄) : f(x) ∈ F[x]

}
.

2.4 Cartan’s Criteria

Suppose that V is a finite dimensional vector space over a field F.
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Proposition 2.4.1
adx is diagonalisable if x is a diagonalisable element of homV .

Proof. There exists a basis {ek}nk=1 such that

x(e1, . . . , en) = (e1, . . . , en) diag(ν1, . . . , νn).

We have

(adx)(eij) = [

n∑
k=1

νkekk, eij ] = (νi − νj)eij .

Corollary 2.4.1
Suppose that x = S +N is a Jordan decomposition of an element of homV .

adx = adS + adN

is a Jordan decomposition.

Proof. The element adN is nilpotent by Proposition 2.1.8 and we have

[adS, adN ] = ad[S,N ] = 0.

Suppose that ρ is a representation of a Lie algebra on a vector space.

Definition 2.4.1
A bilinear form f is said to be invariant for ρ if

f
(
ρ(x)v, w

)
+ f

(
v, ρ(x)w

)
= 0

for ∀(x, v, w).

Proposition 2.4.2
Suppose that ρ is finite dimensional. A symmetric form

Bρ(x, y) = tr
(
ρ(x)ρ(y)

)
is invariant for the adjoint representation.

Proof. We have

Bρ
(
(ad z)(x), y

)
= tr

([
ρ(z), ρ(x)

]
ρ(y)

)
= − tr

(
ρ(x)

[
ρ(z), ρ(y)

])
= −Bρ

(
x, (ad z)(y)

)
.

Corollary 2.4.2
The Killing form on a finite dimensional Lie algebra is invariant for the adjoint
representation.
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Proposition 2.4.3
Suppose that B is an invariant bilinear form on a Lie algebra L and let L0 be
an ideal of L. The subspace

{
x ∈ L : B(x, L0) = {0}

}
is an ideal of L.

Proof. Suppose that B(x⊥0 , L0) = {0}. We have

B
([
x, x⊥0

]
, x0

)
= −B

(
x⊥0 ,

[
x, x0

])
= 0

for ∀(x, x0) of L× L0.

Proposition 2.4.4
Suppose that F is an algebraically closed field of characteristic 0. We define

L =
{
x̄ ∈ homV : (ad x̄)A is a subset of B

}
=
{
x̄ ∈ homV : f(ad x̄)A is a subset of B for ∀f(x) of F[x]x

}
,

where A is a subspace of homV and B is a subspace of A. An element of

L⊥ =
{
x̄ ∈ L : tr(x̄L) = {0}

}
is nilpotent and the Lie algebra L⊥ is nilpotent.

Proof. Suppose that x̄ is an element of L⊥ and let x̄ = S + N be the Jordan
decomposition. The element S belongs to L since there exists an element f(x)
of F[x]x such that adS = f(ad x̄). There exists a basis {ek}nk=1 such that

S(e1, . . . , en) = (e1, . . . , en) diag(ν1, . . . , νn).

Suppose that f is an arbitrary linear functional on 〈ν1, . . . , νn〉Q. The element
f(S) belongs to L since(

ad f(S)
)
(eij) =

(
f(νi)− f(νj)

)
eij

= f(νi − νj)eij
= f(adS)(eij).

We have

n∑
k=1

f(νk)2 = f
(

tr
(
Sf(S)

))
= f

(
tr
(
x̄f(S)

)
− tr

(
Nf(S)

))
= 0

since Nf(S) is nilpotent.

Theorem 2.4.1 (Chevalley)
Suppose that F is a field of characteristic 0. A Lie subalgebra L of homV is
solvable if

tr(L ·DL) = {0}.
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Proof. We may assume that F is algebraically closed. It is sufficient to show
that the derived Lie algebra is nilpotent. The Lie algebra L is a Lie subalgebra
of the Lie algebra

L =
{
x̄ ∈ homV : (ad x̄)L is a subset of DL

}
.

We have
tr(L ·DL) = {0}.

The derived Lie algebra is a Lie subalgebra of the nilpotent Lie algebra L⊥.

Theorem 2.4.2
A finite dimensional Lie algebra L over a field of characteristic 0 is solvable if
and only if

tr
(
(adL)(adDL)

)
= {0}.

Proof. We may assume that the underlying field is algebraically closed.
Suppose that L is solvable. We may assume that adL is a Lie subalgebra of

the subalgebra {
x ∈M(n,F) : xij = 0 for ∀i > ∀j

}
by Lie’s theorem. The Lie subalgebra adDL is contained in the subalgebra{

x ∈M(n,F) : xij = 0 for ∀i ≥ ∀j
}
.

Suppose that
tr
(
(adL)(adDL)

)
= {0}.

The Lie algebra L is solvable since the Lie subalgebra adL is solvable by Cheval-
ley’s theorem.

Corollary 2.4.3 (Cartan)
A finite dimensional Lie algebra over a field of characteristic 0 is solvable if the
Killing form is trivial.

Proposition 2.4.5
A finite dimensional Lie algebra has a maximal solvable ideal.

Proof. There exists a solvable ideal L0 such that

dimL0 = max
{

dimL0 : L0 is a solvable ideal
}

since the ideal {0} is solvable.

Theorem 2.4.3
Suppose that L0 is an ideal of a Lie algebra L and let L1 be a Lie subalgebra
of L. We have

L1

L0 ∩ L1
=
L0 + L1

L0
.

Proof. The subspace L0 + L1 is a Lie subalgebra.



56 CHAPTER 2. FUNDAMENTAL THEOREMS

Proposition 2.4.6
Suppose that L0 is an ideal of a Lie algebra L. The Lie algebra L is solvable if
and only if the ideal L0 and the quotient Lie algebra L/L0 are solvable.

Proof. Suppose that DmL0 = {0} and Dn(L/L0) = {0}. We have Dm+nL =
{0} since the ideal DnL is contained in the ideal L0.

Theorem 2.4.4
The set of solvable ideals of a Lie algebra is a directed set.

Proof. The set of solvable ideals is not empty since the ideal {0} is solvable.
Suppose that L1 and L2 are solvable ideals. The ideal L1 +L2 is solvable since
the ideal L1 and the quotient Lie algebra

L1 + L2

L1
=

L2

L1 ∩ L2

are solvable.

Proposition 2.4.7
A maximal element of a directed set is the maximum element.

Corollary 2.4.4
A maximal solvable ideal of a Lie algebra is the maximum solvable ideal.

Definition 2.4.2
The maximum solvable ideal of a Lie algebra is called the radical of the Lie
algebra. The radical of a Lie algebra L is denoted by radL.

Corollary 2.4.5
A finite dimensional Lie algebra has the radical.

Definition 2.4.3
A Lie algebra is said to be semisimple if the ideal {0} is the only solvable ideal.

Theorem 2.4.5
A Lie algebra is semisimple if and only if the ideal {0} is the only commutative
ideal.

Proof. Suppose that the ideal {0} is the only commutative ideal and let L be
an arbitrary solvable ideal. Suppose that n = min

{
n : DnL = {0}

}
> 0. The

ideal Dn−1L is commutative. This is a contradiction.

Proposition 2.4.8
Suppose that L0 is an ideal of a finite dimensional Lie algebra L. We have

adx =

(
adL0 x ∗

0 ad(x+ L0)

)
for ∀x.
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Proposition 2.4.9
Any commutative ideal of a finite dimensional Lie algebra L is contained in the
ideal L⊥.

Proof. Suppose that L0 is a commutative ideal of the Lie algebra L and let x0

be an element of the ideal L0. We have

adx0 =

(
adL0 x0 ∗

0 ad(x0 + L0)

)
=

(
0 ∗
0 0

)
.

Theorem 2.4.6
A finite dimensional Lie algebra is semisimple if the Killing form is nondegen-
erate.

Proof. We have L⊥ = {0} since the Killing form is nondegenerate.

Theorem 2.4.7 (Cartan)
The following are equivalent for a finite dimensional Lie algebra over a field of
characteristic 0.

1. The Lie algebra is semisimple.

2. The Killing form is nondegenerate.

3. We have
L0 ∩ L⊥0 =

{
x ∈ L0 : B(x, L0) = {0}

}
= {0}

for an arbitrary ideal L0.

Proof. Suppose that the Lie algebra is semisimple and let L0 be an arbitrary
ideal. The Killing form on the ideal L0 ∩ L⊥0 is trivial. The ideal L0 ∩ L⊥0 is
solvable by Cartan’s criterion for solvability.

Corollary 2.4.6
Any ideal of a finite dimensional semisimple Lie algebra over a field of charac-
teristic 0 is semisimple.

Proof. Suppose that L0 is an arbitrary ideal of a finite dimensional semisimple
Lie algebra over a field of characteristic 0. The Killing form on the ideal L0 is
nondegenerate since we have L0 ∩ L⊥0 = {0}. The ideal L0 is semisimple.

2.5 Cohomology

Theorem 2.5.1
We have

hom(

n∧
M,N) =

{
an alternating mapping of Mn into N

}
for unital modules M and N over a commutative ring with identity.
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Proposition 2.5.1
We have ∏

i

hom(Mi, N) = hom(
⊕
i

Mi, N)

for unital modules Mi and N over a commutative ring with identity.

Suppose that ρ is a representation of a Lie algebra L on a vector space V
and let f be an element of hom(

∧n
L, V ). We define

∂f(x1, . . . , xn+1) = −
n+1∑
k=1

(−1)kρ(xk)f(x1, . . . , xk−1, xk+1, . . . , xn+1)

+
∑
i<j

(−1)i+jf
([
xi, xj

]
, x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn+1

)
.

We write
xk = x1 ∧ · · · ∧ xk−1 ∧ xk+1 ∧ · · · ∧ xn

for ∀k and

xij =
[
xi, xj

]
∧ x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xn

for ∀i < ∀j.

Proposition 2.5.2
We have

hom(
∧
L, V ) =

∞∏
n=0

hom(

n∧
L, V ).

Proposition 2.5.3
The element ∂ belongs to hom hom(

∧
L, V ).

hom(
∧0

L, V )
∂−−−−→ hom(

∧1
L, V )

∂−−−−→ hom(
∧2

L, V )
∂−−−−→ · · ·

Proof. Suppose that i < j and let xi = xj = x. We have

∂f(x1, . . . , xn+1) = C1 + C2,

where
C1 = −ρ(x)

(
(−1)if

(
xi
)

+ (−1)jf
(
xj
))

= 0

and

C2 =
∑
k<i

(
(−1)k+if

(
xki
)

+ (−1)k+jf
(
xkj
))

+
∑
i<k<j

(
(−1)i+kf

(
xik
)

+ (−1)k+jf
(
xkj
))

+
∑
j<k

(
(−1)i+kf

(
xik
)

+ (−1)j+kf
(
xjk
))

= 0.
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We define

θ(x)f(x1, . . . , xn) = ρ(x)f(x1, . . . , xn)

−
n∑
k=1

f
(
x1, . . . , xk−1,

[
x, xk

]
, xk+1, . . . , xn

)
.

Proposition 2.5.4
The element θ(x) belongs to hom hom(

∧
L, V ) for ∀x.

Proof. Suppose that i < j and let xi = xj . We have

θ(x)f(x1, . . . , xn) = −f
(
x1, . . . , xi−1,

[
x, xi

]
, xi+1, . . . , xn

)
− f

(
x1, . . . , xj−1,

[
x, xj

]
, xj+1, . . . , xn

)
= 0.

Suppose that f is an element of hom(
∧n+1

L, V ). We define

ι(x)f(x1, . . . , xn) = f(x, x1, . . . , xn).

Proposition 2.5.5
The element ι(x) belongs to hom hom(

∧
L, V ).

0
ι(x)←−−−− hom(

∧0
L, V )

ι(x)←−−−− hom(
∧1

L, V )
ι(x)←−−−− · · ·

Proposition 2.5.6
We have θ(x) =

{
ι(x), ∂

}
for ∀x.

Proof. We have

ι(x)∂f(x1, . . . , xn) = ∂f(x, x1, . . . , xn)

= θ(x)f(x1, . . . , xn) +

n∑
k=1

(−1)kρ(xk)f
(
x ∧ xk

)
−
∑
i<j

(−1)i+jf
(
x ∧ xij

)
and

∂ι(x)f(x1, . . . , xn) = −
n∑
k=1

(−1)kρ(xk)f
(
x ∧ xk

)
+
∑
i<j

(−1)i+jf
(
x ∧ xij

)
.

We have θ(x)f(x1, . . . , xn) =
{
ι(x), ∂

}
f(x1, . . . , xn).

Proposition 2.5.7
We have ι

(
[x1, x2]

)
=
[
θ(x1), ι(x2)

]
for ∀(x1, x2).

Proof. We have

θ(x1)ι(x2)f(x3, . . . , xn+2) = ρ(x1)f(x2, . . . , xn+2)−
n+2∑
k=3

(−1)kf
(
x1k
)
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and

ι(x2)θ(x1)f(x3, . . . , xn+2) = θ(x1)f(x2, . . . , xn+2)

= ρ(x1)f(x2, . . . , xn+2)−
n+2∑
k=2

(−1)kf
(
x1k
)
.

We have[
θ(x1), ι(x2)

]
f(x3, . . . , xn+2) = f

(
x12
)

= ι
(
[x1, x2]

)
f(x3, . . . , xn+2).

Proposition 2.5.8
The element θ is a representation of the Lie algebra L on the vector space
hom(

∧
L, V ).

Proof. It is sufficient to show that

θ
(
[x1, x2]

)
f =

[
θ(x1), θ(x2)

]
f

for ∀f of hom(
∧n

L, V ). The proof is by induction on n.

Suppose that f is an element of hom(
∧0

L, V ). We have

θ
(
[x1, x2]

)
f = ρ

(
[x1, x2]

)
f

=
[
ρ(x1), ρ(x2)

]
f

=
[
θ(x1), θ(x2)

]
f.

Suppose that n > 0 and let f be an element of hom(
∧n

L, V ). We have

ι(x3)θ
(
[x1, x2]

)
= θ
(
[x1, x2]

)
ι(x3)− ι

([
[x1, x2], x3

])
and

ι(x3)θ
(
[x1, x2]

)
f = θ

(
[x1, x2]

)
ι(x3)f − ι

([
[x1, x2], x3

])
f

=
[
θ(x1), θ(x2)

]
ι(x3)f − ι

([
[x1, x2], x3

])
f

by the induction hypothesis. We have

θ(x1)θ(x2)ι(x3) = θ(x1)
(
ι
(
[x2, x3]

)
+ ι(x3)θ(x2)

)
= ι
([
x1, [x2, x3]

])
+ ι
(
[x2, x3]

)
θ(x1) +

(
ι
(
[x1, x3]

)
+ ι(x3)θ(x1)

)
θ(x2)

= ι
([
x1, [x2, x3]

])
+ ι
(
[x2, x3]

)
θ(x1) + ι

(
[x1, x3]

)
θ(x2) + ι(x3)θ(x1)θ(x2)

and[
θ(x1), θ(x2)

]
ι(x3) = ι

([
x1, [x2, x3]

]
−
[
x2, [x1, x3]

])
+ ι(x3)

[
θ(x1), θ(x2)

]
.
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We have

ι(x3)θ
(
[x1, x2]

)
f = ι

([
x1, [x2, x3]

]
−
[
x2, [x1, x3]

]
−
[
[x1, x2], x3

])
f

+ ι(x3)
[
θ(x1), θ(x2)

]
f = ι(x3)

[
θ(x1), θ(x2)

]
f

and
θ
(
[x1, x2]

)
f =

[
θ(x1), θ(x2)

]
f

since the element x3 is arbitrary.

Proposition 2.5.9
The element θ(x) commutes with the element ∂ for ∀x.

Proof. It is sufficient to show that[
∂, θ(x)

]
f = 0

for ∀f of hom(
∧n

L, V ). The proof is by induction on n. Suppose that f is an

element of hom(
∧0

L, V ). We have[
∂, θ(x)

]
f(x1) = ρ(x1)ρ(x)f − ρ(x)ρ(x1)f + ρ

(
[x, x1]

)
f = 0.

Suppose that n > 0 and let f be an element of hom(
∧n

L, V ). We have

ι(x1)∂θ(x) =
(
θ(x1)− ∂ι(x1)

)
θ(x)

= θ(x1)θ(x)− ∂
(
θ(x)ι(x1)− ι

(
[x, x1]

))
= θ(x1)θ(x)− ∂θ(x)ι(x1) + ∂ι

(
[x, x1]

)
and

ι(x1)θ(x)∂ =
(
θ(x)ι(x1)− ι

(
[x, x1]

))
∂

= θ(x)
(
θ(x1)− ∂ι(x1)

)
− ι
(
[x, x1]

)
∂

= θ(x)θ(x1)− θ(x)∂ι(x1) + ∂ι
(
[x, x1]

)
− θ
(
[x, x1]

)
= θ(x1)θ(x)− θ(x)∂ι(x1) + ∂ι

(
[x, x1]

)
.

We have ι(x1)
[
∂, θ(x)

]
= −

[
∂, θ(x)

]
ι(x1) and

ι(x1)
[
∂, θ(x)

]
f = −

[
∂, θ(x)

]
ι(x1)f = 0

by the induction hypothesis. We have[
∂, θ(x)

]
f = 0

since the element x1 is arbitrary.

Theorem 2.5.2
We have ∂2 = 0.
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Proof. It is sufficient to show that ∂2f = 0 for ∀f of hom(
∧n

L, V ). The proof

is by induction on n. Suppose that f is an element of hom(
∧0

L, V ). We have

∂2f(x1, x2) = ρ(x1)∂f(x2)− ρ(x2)∂f(x1)− ∂f
(
[x1, x2]

)
= ρ(x1)ρ(x2)f − ρ(x2)ρ(x1)f − ρ

(
[x1, x2]

)
f = 0.

Suppose that n > 0 and let f be an element of hom(
∧n

L, V ). We have

ι(x)∂2 =
(
θ(x)− ∂ι(x)

)
∂

= θ(x)∂ − ∂
(
θ(x)− ∂ι(x)

)
= ∂2ι(x)

and ι(x)∂2f = ∂2ι(x)f = 0 by the induction hypothesis. We have ∂2f = 0 since
the element x is arbitrary.

2.6 Weyl’s Theorem

Definition 2.6.1
A representation of a Lia algebra on a vector space V 6= {0} is said to be
irreducible if the subspaces V and {0} are the only invariant subspaces.

Definition 2.6.2
A Lie algebra is said to be simple if the adjoint representation is irreducible.

Proposition 2.6.1
A simple Lie algebra is either a semisimple Lie algebra or a commutative Lie
algebra of dimension one.

Proof. A simple Lie algebra of dimension greater than one is not commutative.

Proposition 2.6.2
The derived Lie algebra of a semisimple simple Lie algebra is itself.

Proposition 2.6.3
Suppose that L is a finite dimensional semisimple Lie algebra over a field of
characteristic 0 and let L0 be an ideal of L. We have L = L0 ⊕ L⊥0 .

Proof. Suppose that
{
ek
}dimL

k=1
is a basis of the Lie algebra L such that

{
ek
}dimL0

k=1

is a basis of the ideal L0. There exists a basis
{
fk
}dimL

k=1
such that(

B(ei, fj)
)dimL

i,j=1
= 1.

The set
{
fk
}dimL

k=dimL0+1
is a basis of the ideal L⊥0 . We have L = L0 ⊕ L⊥0 since[
L0, L

⊥
0

]
= L0 ∩ L⊥0 = {0}.
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Theorem 2.6.1
A finite dimensional semisimple Lie algebra over a field of characteristic 0 is a
direct sum of semisimple simple Lie algebras.

Proof. The proof is by induction on the dimension of the Lie algebra L. Suppose
that dimL > 0. We may assume that the Lie algebra L is not simple. There
exists an ideal L0 of the Lie algebra L such that 0 < dimL0 < dimL. The
semisimple ideals L0 and L⊥0 are direct sums of simple Lie algebras by the
induction hypothesis.

Corollary 2.6.1
The derived Lie algebra of a finite dimensional semisimple Lie algebra over a
field of characteristic 0 is itself.

Theorem 2.6.2
Suppose that L =

⊕
i Li is a direct sum of semisimple simple Lie algebras over

a field. We have {
Li : i

}
=
{

a simple ideal of L
}

and {
a partial direct sum of

⊕
i Li
}

=
{

an ideal of L
}
.

Proof. By Remark of 491 (cf. Lie Algebras).

Corollary 2.6.2
A direct sum of semisimple simple Lie algebras over a field is semisimple.

Corollary 2.6.3
A direct sum of finite dimensional semisimple Lie algebras over a field of char-
acteristic 0 is semisimple.

Definition 2.6.3
A finite dimensional representation of a Lie algebra is said to be completely
reducible if the space is an internal direct sum of irreducible invariant subspaces.

Proposition 2.6.4
A representation of a Lie algebra on a finite dimensional vector space V 6= {0}
is associated with an irreducible invariant subspace.

Proof. There exists an invariant subspace V0 6= {0} such that

dimV0 = min
{

dimV0 : V0 6= {0} is an invariant subspace
}

and the invariant subspace V0 is irreducible.

Proposition 2.6.5
The following are equivalent for a representation of a Lie algebra on a finite
dimensional vector space V .

1. The representation is completely reducible.
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2. Suppose that V0 is an invariant subspace. There exists an invariant sub-
space V ⊥0 such that V = V0 ⊕ V ⊥0 .

Proof. Suppose that the representation is completely reducible and let V =⊕n
k=1 Vk be an internal direct sum of irreducible invariant subspaces. The proof

is by induction on codimV0 = dimV − dimV0. Suppose that codimV0 > 0.
There exists k such that the irreducible invariant subspace Vk is not contained
in the invariant subspace V0. We have

V0 ∩ Vk = {0}

since the subspace V0 ∩ Vk 6= Vk is invariant. We have

codim(V0 ⊕ Vk) < codimV0.

There exists an invariant subspace (V0 ⊕ Vk)⊥ such that

V = V0 ⊕ Vk ⊕ (V0 ⊕ Vk)⊥

= V0 ⊕
(
Vk ⊕ (V0 ⊕ Vk)⊥

)
by the induction hypothesis.

Suppose that the condition 2 holds and let V0 =
⊕n

k=1 Vk be an arbitrary
internal direct sum of irreducible invariant subspaces. There exists an invariant
subspace V ⊥0 such that V = V0 ⊕ V ⊥0 . There exists an irreducible invariant
subspace Vn+1 of V ⊥0 provided that V0 6= V by Proposition 2.6.4. The space⊕n+1

k=1 Vk 6= V0 is an internal direct sum of irreducible invariant subspaces.

Definition 2.6.4
A finite dimensional Lie algebra is said to be reductive if the adjoint represen-
tation is completely reducible.

Proposition 2.6.6
An ideal of an ideal of a reductive Lie algebra is an ideal of the Lie algebra.

Proof. Suppose that L0 is an ideal of a reductive Lie algebra L and let L1 be
an ideal of the ideal L0. There exists an ideal L⊥0 of L such that L = L0 ⊕ L⊥0 .
The set [L,L1] = [L0 ⊕ L⊥0 , L1] = [L0, L1] is contained in the set L1.

Proposition 2.6.7
A finite dimensional semisimple Lie algebra over a field of characteristic 0 is
reductive.

Proof. By Proposition 2.6.3.

Proposition 2.6.8
We have{

a simple ideal of L
}

=
{

an irreducible invariant subspace for adL
}

for a reductive Lie algebra L.
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Proof. A simple ideal of the Lie algebra L is an irreducible invariant subspace
for the adjoint representation of the Lie algebra L.

Suppose that L0 is an irreducible invariant subspace for the adjoint repre-
sentation of the Lie algebra L. The ideal L0 is simple since an ideal of the ideal
L0 is an invariant subspace for the adjoint representation of the Lie algebra L
by Proposition 2.6.6.

Theorem 2.6.3
We have the following for a reductive Lie algebra L.

1. The reductive Lie algebra is an internal direct sum of the derived Lie
algebra and the radical.

2. The derived Lie algebra is semisimple.

3. The radical is commutative.

Proof. We may assume that

L = S ⊕A, S =

n⊕
k=1

Lk,

where the ideal Lk is semisimple and simple for ∀k and the ideal A is commu-
tative by Proposition 2.6.8 and Proposition 2.6.1. The ideal S is semisimple by
Corollary 2.6.2. We have S = DS = DL by Proposition 2.6.2. There exists the
radical of the Lie algebra L by Corollary 2.4.5. We have DL∩ radL = {0} since
it is a solvable ideal of the semisimple ideal DL. We have A = radL.

Definition 2.6.5
The kernel of the adjoint representation of a Lie algebra is a commutative ideal
and it is called the center.

Remark 2.6.1
The adjoint representation of a semisimple Lie algebra is faithful.

Theorem 2.6.4
A finite dimensional Lie algebra over a field of characteristic 0 is reductive if
and only if it is a direct sum of a semisimple Lie algebra and a commutative Lie
algebra.

Proof. Suppose that the Lie algebra L = S ⊕A is a direct sum of a semisimple
Lie algebra S and a commutative Lie algebra A. We have S = DS = DL by
Corollary 2.6.1. We have DL ∩ radL = {0} since it is a solvable ideal of the
semisimple ideal DL. We have A = radL. The Lie algebra is reductive since it
is a direct sum of simple Lie algebras by Theorem 2.6.1.

Corollary 2.6.4
Suppose that L is a reductive Lie algebra over a field of characteristic 0.

L = DL⊕ radL
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is the unique decomposition of the Lie algabra into an internal direct sum of a
semisimple ideal and a commutative ideal.

Proposition 2.6.9
Suppose that L is a reductive Lie algebra over a field of characteristic 0. We
have

radL = L⊥.

Proof. The radical is contained in the ideal L⊥. Suppose that x is an element
of the ideal L⊥ and let x = (x − x0) ⊕ x0 be the decomposition in the direct
sum L = DL⊕ radL. We have x = x0 since the Killing form of the derived Lie
algebra is nondegenerate and we have B(x− x0, DL) = B(x,DL) = {0}.

Example 2.6.1
Suppose that F is a field of characteristic 0. The Lie algebra

M(m,F) =
{
x ∈M(m,F) : trx = 0

}
⊕ F

is reductive and we have

DM(m,F) =
{
x ∈M(m,F) : trx = 0

}
, M(m,F)⊥ = F

for m ≥ 1.

Proposition 2.6.10
Suppose that L0 is an ideal of a Lie algebra L and let π be the canonical
homomorphism of the Lie algebra L onto the quotient Lie algebra L/L0. We
have{

an ideal of L containing L0

}
=
{

an ideal L1 of L such that π−1
(
π(L1)

)
= L1

}
=
{

an ideal of L/L0

}
.

Proposition 2.6.11
Suppose that L0 is an ideal of a Lie algebra L and let π be the canonical
homomorphism of the Lie algebra L onto the quotient Lie algebra L/L0. We
have

L/L1 = (L/L0)/π(L1)

for an ideal L1 of the Lie algebra L containing the ideal L0.

Proposition 2.6.12
Suppose that L is a finite dimensional Lie algebra such that L⊥ ∩ DL = {0}.
We have the following.

1. The ideal L⊥ is the largest commutative ideal of the Lie algebra L.

2. The quotient Lie algebra L/L⊥ is semisimple.

Proof. 1. We have
[
L⊥, L⊥

]
= L⊥ ∩DL = {0}.
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2. We write π for the canonical homomorphism of the Lie algebra L onto
the quotient Lie algebra L/L⊥ and let L0 be an ideal of the Lie algebra
L containing L⊥ such that the ideal π(L0) is commutative. We have[

L0, L0

]
= L⊥ ∩DL = {0}

since we have π
([
L0, L0

])
=
[
π(L0), π(L0)

]
= {0}.

Theorem 2.6.5
A finite dimensional Lie algebra over a field of characteristic 0 is reductive if
and only if we have L⊥ ∩DL = {0}.

Proof. We write π for the canonical homomorphism of the Lie algebra L onto
the quotient Lie algebra L/L⊥. Suppose that we have L⊥∩DL = {0}. We have

L = L⊥ ⊕DL

since we have

π(DL) = D
(
π(L)

)
= D(L/L⊥) = L/L⊥.

Proposition 2.6.13
Suppose that R is a commutative ring with identity and let M be a unital
module over R. We have hom(R,M) = M .

Proposition 2.6.14
Suppose that

ρ1 : L→ homV1, ρ2 : L→ homV2

are representations of a Lie algebra L.

ρ(x)f = ρ2(x) ◦ f − f ◦ ρ1(x)

defines a representation ρ of the Lie algebra L on the vector space hom(V1, V2).

Proof. We have

ρ(x1)ρ(x2)f = ρ2(x1) ◦
(
ρ2(x2) ◦ f − f ◦ ρ1(x2)

)
−
(
ρ2(x2) ◦ f − f ◦ ρ1(x2)

)
◦ ρ1(x1)

and[
ρ(x1), ρ(x2)

]
f =

(
ρ2(x1) ◦ ρ2(x2)− ρ2(x2) ◦ ρ2(x1)

)
◦ f

− f ◦
(
ρ1(x1) ◦ ρ1(x2)− ρ1(x2) ◦ ρ1(x1)

)
.

We have [
ρ(x1), ρ(x2)

]
f =

[
ρ2(x1), ρ2(x2)

]
◦ f − f ◦

[
ρ1(x1), ρ1(x2)

]
= ρ2

(
[x1, x2]

)
◦ f − f ◦ ρ1

(
[x1, x2]

)
= ρ
(
[x1, x2]

)
f.
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Weyl’s Theorem
Any finite dimensional representation of a finite dimensional semisimple Lie
algebra over a field of characteristic 0 is completely reducible.

Theorem 2.6.6
Suppose that ρ is a finite dimensional representation of a finite dimensional
semisimple Lie algebra over a field of characteristic 0. We have H1(ρ) = {0}.

Proof of Weyl’s theorem. Suppose that L is a finite dimensional semisimple Lie
algebra over a field of characteristic 0 and let ρ be a representation of the Lie
algebra L on a finite dimensional vector space V .

Suppose that V0 is an invariant subspace for ρ. There exists a subspace V ′1
such that V = V0⊕V ′1 . There exists an element f of hom

(
L,hom(V ′1 , V0)

)
such

that

ρ(x) =

(
ρ0(x) f(x)

0 ρ′1(x)

)
for ∀x. We have

f
(
[x1, x2]

)
= ρ0(x1)f(x2) + f(x1)ρ′1(x2)− ρ0(x2)f(x1)− f(x2)ρ′1(x1)

for ∀(x1, x2) since we have ρ
(
[x1, x2]

)
=
[
ρ(x1), ρ(x2)

]
. The representations ρ0

and ρ′1 are associated with a representation on the vector space hom(V ′1 , V0) by
Proposition 2.6.14 and we have ∂f(x1, x2) = 0 for ∀(x1, x2). There exists an
element f0 of hom(V ′1 , V0) such that

f(x) = −∂f0(x)

= −ρ0(x)f0 + f0ρ
′
1(x)

for ∀x since we have H1
(
L,hom(V ′1 , V0)

)
= {0} by Theorem 2.6.6. We define

V1 =

(
1 f0

0 1

)
V ′1 .

We have V = V0 ⊕ V1. We have

ρ(x)

(
1 f0

0 1

)(
0
v′1

)
=

(
ρ0(x) f(x)

0 ρ′1(x)

)(
1 f0

0 1

)(
0
v′1

)
=

(
ρ0(x) f(x)

0 ρ′1(x)

)(
f0v
′
1

v′1

)
=

(
ρ0(x)f0v

′
1 + f(x)v′1

ρ′1(x)v′1

)
=

(
f0ρ
′
1(x)v′1

ρ′1(x)v′1

)
=

(
1 f0

0 1

)(
0

ρ′1(x)v′1

)
for ∀(x, v′1).
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Lemma 2.6.1
Suppose that V is a finite dimensional vector space over a field of characteristic
0 and let L be a semisimple irreducible Lie subalgebra of homV . We have
H1(L, V ) = {0}.

Proof of Theorem 2.6.6. Suppose that L is a finite dimensional semisimple Lie
algebra over a field of characteristic 0 and let ρ be an irreducible representation
of the Lie algebra on a finite dimensional vector space V . We define

ρ̄(x+ ker ρ) = ρ(x)

for ∀x. The Lie algebra L/ ker ρ = (ker ρ)⊥ is semisimple. We have H1(ρ̄) = {0}
by Lemma 2.6.1. Suppose that φ is an element of hom(L, V ) such that ∂φ = 0.
We have

∂φ(x1, x2) = ρ(x1)φ(x2)− ρ(x2)φ(x1)− φ
(
[x1, x2]

)
= 0

for ∀(x1, x2). The subspace ker ρ = D ker ρ is contained in the subspace kerφ.
We define

φ̄(x+ ker ρ) = φ(x)

for ∀x. We have

∂φ̄(x1 + ker ρ, x2 + ker ρ) = ∂φ(x1, x2) = 0

for ∀(x1, x2). There exists an element v of the vector space V such that φ̄ = ∂v
since we have H1(ρ̄) = {0}. We have

φ(x) = φ̄(x+ ker ρ)

= ∂v(x+ ker ρ)

= ρ̄(x+ ker ρ)v

= ρ(x)v

= ∂v(x)

for ∀x. We have H1(ρ) = {0}.
The proof is by induction on dimV . Suppose that dimV > 0. We may

assume that the representation ρ is reducible. There exists an invariant subspace
V0 for the representation ρ such that 0 < dimV0 < dimV . We have H1(ρV0

) =
{0} and H1(ρV/V0

) = {0} by the induction hypothesis. Suppose that φ is an
element of hom(L, V ) such that ∂φ = 0. We have

∂φ(x1, x2) = ρ(x1)φ(x2)− ρ(x2)φ(x1)− φ
(
[x1, x2]

)
= 0

for ∀(x1, x2). We define an element φV/V0
of hom(L, V/V0) by

φV/V0
(x) = φ(x) + V0

for ∀x. We have
∂φV/V0

(x1, x2) = ∂φ(x1, x2) + V0 = 0
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for ∀(x1, x2). There exists an element v1 + V0 of the vector space V/V0 such
that φV/V0

= ∂(v1 + V0) since we have H1(ρV/V0
) = {0}. We have

φ(x) + V0 = φV/V0
(x)

= ∂(v1 + V0)(x)

= ρV/V0
(x)(v1 + V0)

= ρ(x)v1 + V0

for ∀x. We define an element φV0
of hom(L, V0) by

φV0(x) = φ(x)− ρ(x)v1

for ∀x. We have

∂φV0
(x1, x2) = ∂φ(x1, x2)−

(
ρ(x1)ρ(x2)− ρ(x2)ρ(x1)− ρ

(
[x1, x2]

))
v1 = 0

for ∀(x1, x2). There exists an element v0 of the vector space V0 such that
φV0

= ∂v0 since we have H1(ρV0
) = {0}. We have

φ(x) = φV0(x) + ρ(x)v1

= ∂v0(x) + ρ(x)v1

= ρ(x)(v0 + v1)

= ∂(v0 + v1)(x)

for ∀x.

Lemma 2.6.2 (Schur)
Suppose that ρ is an irreducible representation of a Lie algebra on a vector space
V . An element C of homV \ {0} is an epimorphism if

[
ρ(x), C

]
= 0 for ∀x.

Proof. The subspace CV 6= {0} is invariant for ρ.

Suppose that B is a bilinear form on a finite dimensional vector space V .

Proposition 2.6.15
We have the following provided that B is nondegenerate.

1. There exist bases
{
ek
}n
k=1

and
{
fk
}n
k=1

such that
(
B(ei, fj)

)n
i,j=1

= 1.

2. The element
∑n
k=1 ek ⊗ fk is independent of the choice of the bases.

Proof. 1. Suppose that
{
ek
}n
k=1

is any basis. The matrix
(
B(ei, ej)

)n
i,j=1

is

invertible and let (e1, . . . , en) = (f1, . . . , fn)
(
B(ei, ej)

)n
i,j=1

. We have

(
B(ei, fj)

)n
i,j=1

=
(
B(ei, ej)

)n
i,j=1

((
B(ei, ej)

)n
i,j=1

)−1

= 1

by Remark of 489 (cf. Algebra).
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2. Suppose that

(v1, . . . , vn) = (e1, . . . , en)P, (w1, . . . , wn) = (f1, . . . , fn)Q

are arbitrary bases such that
(
B(vi, wj)

)n
i,j=1

= 1. We have

1 = PTQ

by Remark of 489 (cf. Algebra). We have

n∑
k=1

vk ⊗ wk =

n∑
j=1

( n∑
i=1

Pijei

)
⊗ wj

=

n∑
i=1

ei ⊗
( n∑
j=1

Pijwj

)
=

n∑
i=1

ei ⊗
( n∑
j=1

Q−1
ji wj

)
=

n∑
k=1

ek ⊗ fk.

Proposition 2.6.16
The bilinear form B is nondegenerate if and only if the linear mapping

x 7→
[
y 7→ B(x, y)

]
(2.6)

is an isomorphism of V onto V ∗.

Proof. Suppose that B is nondegenerate. We write
{
δk
}n
k=1

for the dual basis

of the basis
{
fk
}n
k=1

. The linear mapping (2.6) is isomorphism since

B(ek, x) = δk(x)

for ∀x and for ∀k.
Suppose that the linear mapping (2.6) is an isomorphism. Suppose that{

fk
}n
k=1

is an arbitrary basis and let
{
δk
}n
k=1

be the dual basis. There exists a

basis
{
ek
}n
k=1

such that

B(ek, x) = δk(x)

for ∀x and for ∀k. We have
(
B(ei, fj)

)n
i,j=1

= 1.

Suppose that V is a finite dimensional vector space over a field of character-
istic 0 and let L be a semisimple Lie subalgebra of homV .

Proposition 2.6.17
An invariant symmetric form on L

(x1, x2) 7→ tr(x1x2)

is nondegenerate.
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Proof. The ideal L⊥ =
{
x ∈ L : tr(xL) = {0}

}
is solvable by Chevalley’s

theorem since tr(L⊥ ·DL⊥) = tr(L⊥ · L) = {0}. We have L⊥ = {0}.

There exist bases
{
ek
}n
k=1

and
{
fk
}n
k=1

such that
(
tr(eifj)

)n
i,j=1

= 1 by

Proposition 2.6.15. We write

(adx)(e1, . . . , en) = (e1, . . . , en)α(x), (adx)(f1, . . . , fn) = (f1, . . . , fn)β(x)

for ∀x.

Proposition 2.6.18
We have the following.

1. We have α(x) =
(

tr
(
(adx)(ej)fi

))n
i,j=1

for ∀x.

2. We have α(x) + β(x)T = 0 for ∀x.

Proof. 1. We have tr
(
(adx)(ej)fi

)
= αij(x).

2. We have αij(x) + βji(x) = tr
(
(adx)(ej)fi

)
+ tr

(
ej(adx)(fi)

)
= 0.

We define

C =

n∑
k=1

ekfk.

Proposition 2.6.19
We have

[
x,C

]
= 0 for ∀x of L.

Proof. We have

[
x,C

]
=

n∑
k=1

(
(adx)(ek)fk + ek(adx)(fk)

)
=

n∑
i,j=1

(
αij(x)eifj + eiβji(x)fj

)
= 0.

Proof of Lemma 2.6.1. We may assume that L 6= {0}. We have trC = dimL 6=
0 since the underlying field is of characteristic 0. The element C is invertible by
Schur’s Lemma.

Suppose that φ is an element of hom(L, V ) such that ∂φ = 0. We have

∂φ(x1, x2) = x1φ(x2)− x2φ(x1)− φ
(
[x1, x2]

)
= 0

for ∀(x1, x2). We define

v = C−1
n∑
k=1

ekφ(fk).
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Suppose that x is an arbitrary element of the Lie subalgebra L. We have

∂v(x) = xv

= C−1x

n∑
k=1

ekφ(fk)

= C−1
( n∑
k=1

(adx)(ek)φ(fk) +

n∑
k=1

ekxφ(fk)
)
,

where

n∑
k=1

(adx)(ek)φ(fk) =

n∑
i,j=1

αij(x)eiφ(fj)

= −
n∑

i,j=1

βji(x)eiφ(fj)

= −
n∑
k=1

ekφ
(
(adx)(fk)

)
.

We have

∂v(x) = C−1
n∑
k=1

ek

(
−φ
(
(adx)(fk)

)
+ xφ(fk)

)
= C−1

n∑
k=1

ekfkφ(x) = φ(x).

Proposition 2.6.20
Suppose that L is a finite dimensional semisimple Lie algebra over a field of
characteristic 0 and let ρ be a finite dimensional representation of L. We have
tr ρ(L) = {0}.

Proof. We have

tr ρ(L) = tr ρ(DL)

= span tr
[
ρ(L), ρ(L)

]
= {0}

since we have L = DL by Corollary 2.6.1.

Lemma 2.6.3 (Schur)
Suppose that ρ is an irreducible representation of a Lie algebra over an alge-
braically closed field on a finite dimensional vector space V and let C be an
element of homV . The element C is scalar if we have

[
ρ(x), C

]
= 0 for ∀x .

Proof. We may assume that V 6= {0}. There exists an eigenvalue ν of the
element C since the underlying field is algebraically closed. The subspace (C −
ν)V 6= V is invariant for the irreducible representation ρ.
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Theorem 2.6.7
Suppose that V is a finite dimensional vector space over an algebraically closed
field of characteristic 0 and let L be a semisimple Lie subalgebra of homV .

1. Suppose that
x̄ = S +N

is the Jordan decomposition of an element of the Lie subalgebra L. The
elements S and N belong to the Lie subalgebra L.

2. Suppose that ρ is a representation of the Lie subalgebra L on a finite
dimensional vector space.

ρ(x̄) = ρ(S) + ρ(N)

is the Jordan decomposition.

Proof. 1. The restriction of the adjoint representation ad of the Lie algebra
homV to the Lie subalgebra L is completely reducible by Weyl’s theorem.
There exists an invariant subspace L⊥ for adL such that we have homV =
L⊕L⊥. The set

[
L,L⊥

]
is contained in the set L⊥. The subspaces L and

L⊥ are invariant for the element adS by Corollary 2.3.2 since

ad x̄ = adS + adN

is the Jordan decomposition by Corollary 2.4.1. There exists a unique ele-
ment S⊥ of L⊥ such that the element S−S⊥ belongs to the Lie subalgebra
L. We have [

S⊥, L
]

=
[
S − (S − S⊥), L

]
= L ∩ L⊥ = {0}.

The Lie subalgebra L is completely reducible by Weyl’s theorem and let

V =

n⊕
k=1

Vk

be a decomposition into an internal direct sum of irreducible invariant
subspaces for the Lie subalgebra L. Suppose that

x̄k = Sk +Nk

is the Jordan decomposition for ∀k. We have

S = diag(S1, . . . , Sn), N = diag(N1, . . . , Nn).

We have

0 = tr x̄k

= trSk = trS⊥k
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for ∀k by Proposition 2.6.20. The element S⊥k is scalar for ∀k by Schur’s
Lemma since we have

0 =
[
x, S⊥

]
= diag

([
x1, S

⊥
1

]
, . . . ,

[
xn, S

⊥
n

])
for ∀x of the Lie subalgebra L. We have S⊥ = 0.

2. We write ad for the adjoint representations of the Lie subalgebras L and
ρ(L).

ad x̄ = adS + adN

is the Jordan decomposition by Corollary 2.4.1 and Corollary 2.3.4. The
element ad ρ(S) is semisimple since we have

L =
⊕
ν

ker(adS − ν)

by Proposition 2.3.3 and we have

ρ(L) =
∑
ν

ρ
(
ker(adS − ν)

)
=
∑
ν

ker
(
ad ρ(S)− ν

)
.

The element ad ρ(N) is nilpotent since the element adN is nilpotent.

ad ρ(x̄) = ad ρ(S) + ad ρ(N)

is the Jordan decomposition. The Lie subalgebra ρ(L) = L/ ker ρ is
semisimple by Theorem 2.6.2 and

ρ(x̄) = ρ(S) + ρ(N)

is the Jordan decomposition since the adjoint representation of the Lie
subalgebra ρ(L) is faithful.

Definition 2.6.6
An element x of a finite dimensional semisimple Lie algebra over an algebraically
closed field of characteristic 0 is said to be semisimple (resp. nilpotent) if the
element adx is semisimple (resp. nilpotent).

Definition 2.6.7
A Lie subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is called a toral subalgebra if it consists
of semisimple elements.

Proposition 2.6.21
A toral subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is abelian.
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Proof. We write ad the adjoint representation of the Lie subalgebra L. We
assume that the Lie subalgebra L is not abelian. There exist elements x1 and
x2 of the Lie subalgebra L such that we have [x1, x2] 6= 0. We have

L =
⊕
ν

ker(adx1 − ν)

=
⊕
ν

ker(adx2 − ν).

since the elements adx1 and adx2 are semisimple by Corollary 2.3.4. There
exists an element ν 6= 0 such that we have ker(adx1 − ν) 6= {0} since we have
L 6= ker(adx1). We may assume that [x1, x2] = νx2 and let x1 =

⊕
ν x1ν be

the decomposition in the direct sum
⊕

ν ker(adx2 − ν). We have

−νx2 = [x2, x1] =
⊕
ν

νx1ν = 0

since the element −νx2 belongs to the subspace ker(adx2).

2.7 Lie Groups

Proposition 2.7.1
Any two points of a connected smooth manifold belong to the image of some
smooth curve of the real line into the manifold.

Proposition 2.7.2
1 Suppose that ∆ is an involutive distribution of rank m on a smooth manifold
and let H be an integral manifold2 of the distribution ∆. Suppose that U =
Cnε (0) is a flat chart3 with respect to the distribution ∆. A component of the
manifold H ∩ U is an open set of some slice

Cmε (0)×
{(
xm+1

0 , . . . , xn0
)}

and a regular submanifold.

Theorem 2.7.1 (Global Frobenius Theorem)
4 The collection of all maximal connected integral manifolds of an involutive
distribution on a nonempty smooth manifold forms a foliation5.

Theorem 2.7.2
An involutive distribution on a smooth manifold induces a foliation.

1[4, Proposition 19.16].
2[4, p. 491].
3[4, p. 496].
4[4, Theorem 19.21].
5[4, p. 501].
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Theorem 2.7.3
Suppose that f is a homomorphism of a Lie group G into a Lie group H. The
following diagram commutes.

G
f−−−−→ H

exp

x xexp

Lie(G)
f∗−−−−→ Lie(H)

Proof. Suppose that X is an element of the Lie algebra Lie(G). We have

f(expX) = exp

((
∂

∂t
f
(
exp(tX)

))
t=0

)
= exp

(
f∗(X)

)
since the mapping t 7→ f

(
exp(tX)

)
is a one-parameter subgroup.

Corollary 2.7.1
The exponential mapping of a Lie subgroup of a Lie group is the restriction of
the exponential mapping of the Lie group.

Proposition 2.7.3
Suppose that v1 and v2 are smooth vector fields on a smooth manifold. We have
Lv1v2 = [v1, v2].

Proof. We write θ1 and θ2 for the flows generated by the smooth vector fields
v1 and v2. We have

(Lv1v2)(x) =

(
∂

∂t1
θ1(−t1)∗v2

(
θ1(t1)(x)

))
t1=0

.

Suppose that f is an arbitrary smooth function. We have

(Lv1v2)(x)(f) =

(
∂

∂t1
v2

(
θ1(t1)(x)

)(
f ◦ θ1(−t1)

))
t1=0

=

(
∂2

∂t1∂t2
f ◦ θ1(−t1) ◦ θ2(t2) ◦ θ1(t1)(x)

)
(t1,t2)=(0,0)

since we have(
∂

∂t2
f ◦ θ1(−t1) ◦ θ2(t2) ◦ θ1(t1)(x)

)
t2=0

=
(
f ◦ θ1(−t1)

)
∗v2

(
θ1(t1)(x)

)
= v2

(
θ1(t1)(x)

)(
f ◦ θ1(−t1)

)
.

We have

(Lv1v2)(x)(f) =

(
∂2

∂t1∂t2
f ◦ θ1(t3) ◦ θ2(t2) ◦ θ1(t1)(x)

)
(t1,t2,t3)=(0,0,0)

−
(

∂2

∂t2∂t3
f ◦ θ1(t3) ◦ θ2(t2) ◦ θ1(t1)(x)

)
(t1,t2,t3)=(0,0,0)

.



78 CHAPTER 2. FUNDAMENTAL THEOREMS

We have(
∂2

∂t1∂t2
f ◦ θ1(t3) ◦ θ2(t2) ◦ θ1(t1)(x)

)
(t1,t2,t3)=(0,0,0)

=

(
∂2

∂t1∂t2
f ◦ θ2(t2) ◦ θ1(t1)(x)

)
(t1,t2)=(0,0)

and we have(
∂2

∂t2∂t3
f ◦ θ1(t3) ◦ θ2(t2) ◦ θ1(t1)(x)

)
(t1,t2,t3)=(0,0,0)

=

(
∂2

∂t1∂t2
f ◦ θ1(t1) ◦ θ2(t2)(x)

)
(t1,t2)=(0,0)

.

We have (
∂2

∂t1∂t2
f ◦ θ2(t2) ◦ θ1(t1)(x)

)
(t1,t2)=(0,0)

=

(
∂

∂t1
v2

(
θ1(t1)(x)

)
(f)

)
t1=0

=

(
∂

∂t1

d∑
j=1

vj2
(
θ1(t1)(x)

)∂f(θ1(t1)(x)
)

∂xj

)
t1=0

=

d∑
i,j=1

(
∂vj2(x)

∂xi
vi1(x)

∂f(x)

∂xj
+ vj2(x)

∂2f(x)

∂xi∂xj
vi1(x)

)

=

d∑
i=1

vi1(x)
∂

∂xi

d∑
j=1

vj2(x)
∂f(x)

∂xj
= v1(x)

(
v2(f)

)
and we have

(Lv1v2)(x)(f) = v1(x)
(
v2(f)

)
− v2(x)

(
v1(f)

)
= [v1, v2](x)(f).

Theorem 2.7.4
Suppose that X1 and X2 are left invariant vector fields on a Lie group. The
following are equivalent.

1. We have [X1, X2] = 0.

2. We have exp(t1X1) exp(t2X2) = exp(t2X2) exp(t1X1) for any (t1, t2).

3. We have ∫ t1

X1 ◦
∫ t2

X2 =

∫ t2

X2 ◦
∫ t1

X1

for any (t1, t2).
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Proof. Suppose that we have [X1, X2] = 0. We show that we have∫ t1

X1 ◦
∫ t2

X2 =

∫ t2

X2 ◦
∫ t1

X1

for any (t1, t2). We write

θ1(t) =

∫ t

X1, θ2(t) =

∫ t

X2.

It is sufficient to show that we have

∂

∂t2
θ1(t1) ◦ θ2(t2)(g) = X2

(
θ1(t1) ◦ θ2(t2)(g)

)
.

We have

∂

∂t2
θ1(t1) ◦ θ2(t2)(g) = θ1(t1)∗

∂

∂t2
θ2(t2)(g) = θ1(t1)∗X2

(
θ2(t2)(g)

)
.

It is sufficient to show that we have

∂

∂t1
θ1(−t1)∗X2

(
θ1(t1) ◦ θ2(t2)(g)

)
= 0.

We write h = θ1(t1) ◦ θ2(t2)(g). We have

∂

∂t1
θ1(−t1)∗X2

(
θ1(t1) ◦ θ2(t2)(g)

)
= lim

∆t1→0

θ1

(
−(t1 + ∆t1)

)
∗X2

(
θ1(t1 + ∆t1) ◦ θ2(t2)(g)

)
− θ1(−t1)∗X2

(
θ1(t1) ◦ θ2(t2)(g)

)
∆t1

= θ1(−t1)∗ lim
∆t1→0

θ1(−∆t1)∗X2

(
θ1(∆t1)(h)

)
−X2(h)

∆t1

= θ1(−t1)∗

(
∂

∂t1
θ1(−t1)∗X2

(
θ1(t1)(h)

))
t1=0

= θ1(−t1)∗
(
(LX1

X2)(h)
)

= 0.

Theorem 2.7.5
Suppose that f is a smooth function on an open interval of the real line and let
x0 be a point of the open interval. Suppose that n is a positive integer. The
function on the open interval

x 7→
∫ 1

0

(1− θ)n−1f (n)
(
x0 + θ(x− x0)

)
dθ

is smooth and we have

f(x) =

n−1∑
k=0

f (k)(x0)(x− x0)k

k!
+

(x− x0)n

(n− 1)!

∫ 1

0

(1− θ)n−1f (n)
(
x0 + θ(x− x0)

)
dθ

for any x.
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Proposition 2.7.4
Suppose that X1 and X2 are elements of the Lie algebra of a Lie group.

1. We have

exp(X1 +X2) = lim
n→∞

(
exp

(
X1

n

)
exp

(
X2

n

))n
.

2. We have

exp(X1 +X2) = (expX1)(expX2) = (expX2)(expX1)

provided that we have [X1, X2] = 0.

Theorem 2.7.6
The following are equivalent for a subgroup of a Lie group.

1. The subgroup is closed.

2. The subgroup is a regular submanifold.

3. The subgroup is an imbedded Lie subgroup.

Proposition 2.7.5
Suppose that f and g are homomorphisms of a connected Lie group into a Lie
group. We have f = g provided that we have Df(e) = Dg(e).

Proof. The following diagram commutes.

G
f,g−−−−→ H

exp

x xexp

Lie(G)
f∗=g∗−−−−→ Lie(H)

The homomorphisms f and g are identical on a neighborhood of the identity
since the exponential mappings are local diffeomorphisms at the origins. We
have f = g since the connected Lie group is generated by the neighborhood of
the identity.

Theorem 2.7.7
6 Suppose that θ is a smooth right action of a Lie group G on a smooth manifold
M .

1. The mapping

R×M →M, (t, p) 7→ θ
(
p, exp(tX)

)
is a smooth global flow for any element X of the Lie algebra Lie(G).

6[4, Theorem 20.15].
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2. The mapping

Lie(G)→ V (M), X 7→ θ(X) =

[
p 7→

(
∂

∂t

)
t=0

θ
(
p, exp(tX)

)]
(2.7)

is a homomorphism of Lie algebras.

Definition 2.7.1
The homomorphism (2.7) is called the infinitesimal generator of the smooth
right action θ.

Proposition 2.7.6
Suppose that X is a smooth manifold and let V be a finite dimensional subspace
of the real vector space V (X). The mapping

V ×X → TX, (v, x) 7→ v(x)

is smooth.

Proof. Suppose that
{
ej
}n
j=1

is a basis of the vector space V and let

ej(x) =

d∑
k=1

ekj (x)
∂

∂xk
.

We have

v(x) = v1e1(x) + · · ·+ vnen(x)

=

d∑
k=1

(
v1ek1(x) + · · ·+ vnekn(x)

) ∂

∂xk
.

Corollary 2.7.2
Suppose that G is a Lie group. The mapping

Lie(G)×G→ TG, (X, g) 7→ X(g)

is smooth.

Proposition 2.7.7
Suppose that X is a smooth manifold and let V be a finite dimensional subspace
of the real vector space V (X) such that each element of the set V is complete.
The mapping

R× V ×X → X, (t, v, x) 7→
∫ t

v(x)

is smooth.
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Proof. The mapping

V ×X → T(v,x)(V ×X) = V ⊕ TxX, (v, x) 7→ 0⊕ v(x) (2.8)

is a smooth vector field. The mapping

R× V ×X → V ×X, (t, v, x) 7→ θ(t, v, x) =
(
v,

∫ t

v(x)
)

is the global flow generated by the vector field (2.8) since we have

θ(0, v, x) = (v, x),
∂θ(t, v, x)

∂t
= 0⊕ ∂

∂t

∫ t

v(x)

= 0⊕ v
(∫ t

v(x)
)
.

Corollary 2.7.3
The exponential mapping of a Lie group is smooth.

Proposition 2.7.8
We have D exp(0) = 1 for any Lie group.

Proof. We have

exp∗X =

(
∂

∂t
exp(tX)

)
t=0

= X

for any X.

Proposition 2.7.9
The image of a smooth curve of a nonempty open interval of the real line into a
smooth manifold is contained in the unique leaf of the foliation induced by an
involutive distribution provided that its each velocity belongs to the involutive
distribution.

Proposition 2.7.10
Suppose that G is a connected Lie group and let V be any neighborhood of the
origin of the Lie algebra Lie(G). We have

G =

∞⋃
n=1

{
(expX1) · · · (expXn) : (Xk)nk=1 ∈ V n

}
.

Proposition 2.7.11
Suppose that G is a connected Lie group and let M be a smooth manifold. The
mapping of the set{

smooth right actions of the Lie group G on the manifold M
}

into the set{
complete actions of the Lie algebra Lie(G) on the manifold M

}
is injective.
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Proof. Suppose that θ1 and θ2 are smooth right actions of the Lie group G on
the manifold M such that we have θ1(X) = θ2(X) for any element X of the Lie
algebra Lie(G). We have

(θ1)expX =

∫ 1

θ1(X) =

∫ 1

θ2(X) = (θ2)expX

for any element X of the Lie algebra Lie(G). Suppose that g is an arbitrary
element of the Lie group G. We can write g = (expX1) · · · (expXn) since the
Lie group G is connected. We have

(θ1)g = (θ1)expXn ◦ · · · ◦ (θ1)expX1

= (θ2)expXn ◦ · · · ◦ (θ2)expX1
= (θ2)g.

Theorem 2.7.8 (Fundamental Theorem on Lie Algebra Actions)
7 Suppose that G is a simply connected Lie group. We have{

smooth right actions of the Lie group G on a smooth manifold
}

=
{

complete actions of the Lie algebra Lie(G) on a smooth manifold
}
.

Proof. Suppose that θ is a complete action of the Lie algebra Lie(G) on a
nonempty smooth manifold M . The mapping

Lie(G)→ V (G×M), X 7→ X ⊕ θ(X)

is an injective homomorphism of Lie algebras. The set

∆ =
⊔

(g,p)∈G×M

∆(g, p), ∆(g, p) =
{
X ⊕ θ(X)(g, p) : X ∈ Lie(G)

}
is an involutive distribution of rank dimG. We write{

G(g,p) : (g, p) ∈ G×M
}

for the foliation induced by the involutive distribution.

The mapping

Lie(G)×G×M → G×M, (X, g, p) 7→
(
g expX,

∫ 1

θ(X)(p)
)

is smooth. The smooth mapping

R×G×M → G×M, (t, g, p) 7→
(
g exp(tX),

∫ 1

θ(tX)(p)
)

7[4, Theorem 20.16].
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is the global flow generated by the smooth vector field X⊕θ(X) for any element
X of the Lie algebra Lie(G) since we have

∂

∂t

(
g exp(tX),

∫ 1

θ(tX)(p)
)

= X
(
g exp(tX)

)
⊕ ∂

∂t

∫ t

θ(X)(p)

= X
(
g exp(tX)

)
⊕ θ(X)

(∫ t

θ(X)(p)
)

= X ⊕ θ(X)
(
g exp(tX),

∫ 1

θ(tX)(p)
)
.

The point (
g exp(tX),

∫ 1

θ(tX)(p)
)

belongs to the leaf G(g,p).
Suppose that p0 is an arbitrary point of the manifold M . We write Gp0 =

G(e,p0) and let πp0 be the ristriction of the projection πG to the leaf Gp0 . The
smooth mapping πp0 is a submersion since we have

Dπp0(g, p)
(
X ⊕ θ(X)(g, p)

)
= X(g)

for any element X of the Lie algebra Lie(G).
We show that the smooth submersion πp0 is onto. Suppose that g is an

arbitrary element of the Lie group G. We can write g = (expX1) · · · (expXn)
since the Lie group G is connected. The point

(g, p) =
(
(expX1) · · · (expXn),

∫ 1

θ(Xn) ◦ · · · ◦
∫ 1

θ(X1)(p0)
)

belongs to the leaf Gp0 .
There exists a connected neighborhood V of the origin of the Lie algebra

Lie(G) such that the exponential mapping is a diffeomorphism of the domain
V onto the domain expV . Suppose that p is an arbitrary point of the set
πM
(
π−1
p0 (g)

)
. The smooth mapping

g expV → Gp0 , g expX 7→ σp(g expX) =
(
g expX,

∫ 1

θ(X)(p)
)

is an imbedding. Suppose that (g expX, q) is an arbitrary point of the open set
π−1
p0 (g expV ). The point

(g, p) =
(
g,

∫ −1

θ(X)(q)
)

belongs to the leaf Gp0 and we have

σp(g expX) =
(
g expX,

∫ 1

θ(X)(p)
)

= (g expX, q).
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The mapping πp0 is a smooth covering since we have

π−1
p0 (g expV ) =

⊔
p∈πM (π−1

p0
(g))

σp(g expV ).

The smooth covering πp0 is a diffeomorphism since the Lie group is simply
connected.

We define

M ×G→M, (p, g) 7→ θ(p, g) = πM ◦ π−1
p (g). (2.9)

We have

θ
(
p, (expX1) · · · (expXn)

)
=

∫ 1

θ(Xn) ◦ · · · ◦
∫ 1

θ(X1)(p) (2.10)

for any element
(
p, (Xk)nk=1

)
of the set M × Lie(G)n for any n. The mapping

(2.9) is a smooth right action and we have(
∂

∂t

)
t=0

θ
(
p, exp(tX)

)
=

(
∂

∂t

)
t=0

∫ t

θ(X)(p) = θ(X)(p).

Theorem 2.7.9
8 Suppose that G is a simply connected Lie group. We have{

homomorphisms of the Lie algebra Lie(G) into the Lie algebra Lie(H)
}

=
{

homomorphisms of the Lie group G into the Lie group H
}

for any Lie group H.

Proof. A homomorphism f∗ of the Lie algebra Lie(G) into the Lie algebra Lie(H)
is a complete action of the Lie algebra Lie(G) on the Lie group H. We define a
smooth mapping f(g) = f∗(e, g). We have

f∗(X) =

(
∂

∂t

)
t=0

f∗
(
e, exp(tX)

)
=

(
∂

∂t

)
t=0

f
(
exp(tX)

)
for any element X of the Lie algebra Lie(G). By Proposition 2.7.5 it is sufficient
to show that the smooth mapping f is a homomorphism of groups. By the
equation (2.10) we have

f
(
(expX1) · · · (expXn)

)
=

∫ 1

f∗(Xn) ◦ · · · ◦
∫ 1

f∗(X1)(e)

=

∫ 1

f∗(X1)(e) · · ·
∫ 1

f∗(Xn)(e)

= f(expX1) · · · f(expXn)

for any element (Xk)nk=1 of the set Lie(G)n for any n.
8[4, Theorem 20.19].
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Proposition 2.7.12
The mapping

G→
(
hom Lie(G)

)×
, g 7→ Ad g =

[
X 7→

(
∂

∂t

)
t=0

g(exp tX)g−1

]
is a representation of a Lie group G.

Theorem 2.7.10
We have D(Ad)(e) = ad for any Lie group.



Chapter 3

Root Systems and
Semisimple Lie Algebras

3.1 Zariski Topology

Suppose that V is a finite dimensional vector space over a field F and let (ek)nk=1

be the dual basis of some basis (ek)nk=1 of the vector space.

Proposition 3.1.1
The mapping

S(V ∗)→ F, f 7→ f(x)

is a homomorphism of algebras with identity for any point x of the space V .

Proposition 3.1.2
There exists a canonical homomorphism of algebras with identity of the algebra
S(V ∗) into the algebra FV .

Definition 3.1.1
Suppose that S is a subset of the algebra S(V ∗). We write

S−1(0) =
⋂
f∈S

f−1(0).

Proposition 3.1.3
Suppose that S is a subset of the algebra S(V ∗). We have

S−1(0) = (S)−1(0).

Proposition 3.1.4
Suppose that (Sk)mk=1is a finite sequence of subsets of the algebra S(V ∗). We
have

m⋃
k=1

S−1
k (0) = (S1 · · ·Sm)−1(0).

87
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Proposition 3.1.5
The collection{

V \ S−1(0) : S is a subset of the algebra S(V ∗)
}

is a topology of the space V .

Proposition 3.1.6
Suppose that the field F is infinite and let f be an element of the space S(V ∗) \
{0}.

1. The Zariski open set V \ f−1(0) is not empty.

2. The Zariski open set V \ f−1(0) is infinite if we have dimV ≥ 1.

Proof. The proof is by induction on the nonnegative integer n = dimV . Suppose
that we have n = 0. The Zariski closed set f−1(0) is empty. Suppose that we
have n > 0. We can write

f(e) = fm(e1, . . . , en−1)(en)m + · · ·+ f0(e1, . . . , en−1), fm(e1, . . . , en−1) 6= 0.

There exists an element (x1, . . . , xn−1) of the space Fn−1 such that we have
fm(x1, . . . , xn−1) 6= 0 by the induction hypothesis. We define

g(e) = f(x1, . . . , xn−1, e) = fm(x1, . . . , xn−1)em + · · ·+ f0(x1, . . . , xn−1).

The Zariski open set F \ g−1(0) is infinite.

Proposition 3.1.7
Suppose that the field F is infinite. Any finite intersection of nonempty Zariski
open sets of the space V is not empty.

Proposition 3.1.8
Suppose that the field F is infinite. The algebra S(V ∗) is a subalgebra with
identity of the algebra FV .

Proposition 3.1.9
We have (

(e1 − x1, . . . , en − xn)
)−1

(0) = {x}

for any point x =
∑n
k=1 x

kek of the space V .

Definition 3.1.2
We define a linear mapping

∂

∂xj

on the algebra F[x1, . . . , xn] by

∂xm1
1 · · ·xmnn
∂xj

=
mjx

m1
1 · · ·xmnn
xj

for any m.
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Proposition 3.1.10

The linear mapping
∂

∂xj
is a derivation of the algebra F[x1, . . . , xn].

Proof. We show that we have

∂f(x)g(x)

∂xj
=
∂f(x)

∂xj
g(x) + f(x)

∂g(x)

∂xj

for any elements f(x) and g(x) of the algebra F[x1, . . . , xn]. We may assume
that the polynomials f(x) and g(x) are monomials since the mappings

(
f(x), g(x)

)
7→ ∂f(x)g(x)

∂xj
,

(
f(x), g(x)

)
7→ ∂f(x)

∂xj
g(x) + f(x)

∂g(x)

∂xj

are bilinear.

Proposition 3.1.11
The vector space V is a subspace of the vector space DerS(V ∗).

Suppose that W is a finite dimensional vector space over the field F and let
(ek)mk=1 be the dual basis of some basis (ek)mk=1 of the vector space.

Proposition 3.1.12
There exists a canonical linear mapping of the space S(V ∗)⊗W into the space
WV = FV ⊗W .

Proposition 3.1.13
Suppose that the field F is infinite. The space S(V ∗)⊗W is a subspace of the
space WV .

Proposition 3.1.14
Suppose that X is a commutative algebra with identity over the field F.

1. There exists a canonical mapping

S(V ∗)× (X ⊗ V )→ X,

(f, x) =
(
f(e1, . . . , en),

n∑
k=1

xk ⊗ ek
)
7→ f(x) = f(x1, . . . , xn).

2. The mapping

S(V ∗)→ X, f 7→ f(x)

is a homomorphism of algebras with identity for any element x of the
space X ⊗ V .
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Definition 3.1.3
We write

g ◦ f = g(f)

= g
(
f1(e1, . . . , en), . . . , fm(e1, . . . , en)

)
for any element

(g, f) =
(
g(e1, . . . , em),

m∑
k=1

fk(e1, . . . , en)⊗ ek
)

of the space S(W ∗)×
(
S(V ∗)⊗W

)
.

Suppose that U is a finite dimensional vector space over the field F.

Proposition 3.1.15
There exists a canonical mapping

S(V ∗)⊗W × S(U∗)⊗ V → S(U∗)⊗W,

(g =

m∑
k=1

gk ⊗ ek, f) 7→ g ◦ f =

m∑
k=1

(gk ◦ f)⊗ ek.

Proposition 3.1.16
The following diagram commutes.

S(V ∗)⊗W × S(U∗)⊗ V −−−−→ S(U∗)⊗Wy y
WV × V U −−−−→ WU

Proposition 3.1.17
We have the following.

1. There exists a canonical mapping

S(V ∗)⊗W → S(V ∗)⊗ hom(V,W ), f 7→ f ′.

2. We have

f ′ =

m∑
i=1

n∑
j=1

∂f i(e1, . . . , en)

∂ej
ei ⊗ ej

for any element

f =

m∑
k=1

fk(e1, . . . , en)⊗ ek

of the space S(V ∗)⊗W .



3.1. ZARISKI TOPOLOGY 91

3. There exists a canonical mapping

S(V ∗)⊗ V → S(V ∗), f 7→ det f ′.

4. We have

det f ′ = det

(
∂f i(e1, . . . , en)

∂ej

)n
i,j=1

for any element

f =

n∑
k=1

fk(e1, . . . , en)⊗ ek

of the space S(V ∗)⊗ V .

Proposition 3.1.18
Suppose that X is an algebra over the field F. There exists a canonical linear
mapping

X ⊗ hom(V,W )⊗X ⊗ hom(U, V )→ X ⊗ hom(U,W ),

x1 ⊗ g ⊗ x2 ⊗ f 7→ (x1 ⊗ g) ◦ (x2 ⊗ f) = x1x2 ⊗ (g ◦ f).

Theorem 3.1.1
Suppose that (g, f) is an element of the space S(V ∗) ⊗W × S(U∗) ⊗ V . We
have

(g ◦ f)′ = (g′ ◦ f) ◦ f ′.

Proposition 3.1.19
Suppose that f is an element of the space S(V ∗)⊗ V . We have

(det f ′)(x) = det
(
f ′(x)

)
for any point x of the space V .

Proposition 3.1.20
Suppose that the field F is of characteristic 0. An element f of the space
S(V ∗)⊗ V is algebraically independent over the field F if we have det f ′ 6= 0.

Proof. Suppose that the element f is algebraically dependent over the field F.
We show that we have det f ′ = 0. There exists an element g of the space
S(V ∗) \ {0} such that we have g ◦ f = 0. We may assume that we have

deg g = min
{

deg g : g is an element of the set S(V ∗) \ {0}
such that we have g ◦ f = 0

}
≥ 1.

We have
V =

{
x : (g′ ◦ f)(x) = 0

}
∪
{
x : det f ′(x) = 0

}
since we have

0 = (g ◦ f)′ = (g′ ◦ f) ◦ f ′.
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Suppose that we have g′ ◦ f = 0. We have
∂g

∂e1
= · · · = ∂g

∂en
= 0 since we have

deg
∂g

∂e1
, . . . ,deg

∂g

∂en
< deg g.

The element g is constant since the field F is of characteristic 0. This is a
contradiction. We have det f ′ = 0.

3.2 Commutative Algebras

In this section we require the following.

1. An algebra is a commutative algebra with identity.

2. A subalgebra is a subalgebra with identity.

3. A homomorphism of algebras is a homomorphism of algebras with identity.

Suppose that R1 is a subring of a ring R2.

Definition 3.2.1
An element x of the ring R2 is said to be integral over the ring R1 if there exists
a monic polynomial f over the ring R1 such that we have f(x) = 0.

Proposition 3.2.1
Suppose that S is a subset of the ring R2 that is integral over the ring R1. The
ring R1[S] is integral over the ring R1.

Proposition 3.2.2
Suppose that E is an extension field of a field F. An element of the field E is
algebraic over the field F if and only if it is integral over the ring F.

Proposition 3.2.3
Suppose that E is an extension field of a field F and let S be a subset of the
field E that is algebraic over the field F. The field F(S) = F[S] is algebraic over
the field F.

Proposition 3.2.4
Suppose that R is a subring of a field F. The field Q(R) is a subfield of the field
F.

Proposition 3.2.5
Suppose that the ring R2 is an integral domain. The field Q(R1) is a subfield
of the field Q(R2) and the following diagram commutes.

R1 −−−−→ R2y y
Q(R1) −−−−→ Q(R2)
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Proposition 3.2.6
Suppose that the ring R2 is an integral domain that is integral over the integral
domain R1. The field Q(R2) is algebraic over the field Q(R1).

Proof. The field Q(R2) = Q(R1)(R2) is algebraic over the field Q(R1) since the
integral domain R2 is algebraic over the field Q(R1).

Proposition 3.2.7
Suppose that the ring R2 is an integral domain that is integral over the integral
domain R1. The integral domain R1 is a field if and only if the integral domain
R2 is a field.

Proof. Suppose that the integral domain R1 is a field. The integral domain R2

is algebraic over the field R1 since the field Q(R2) is algebraic over the field R1.
We have Q(R2) = R1(R2) = R1[R2] = R2.

Suppose that the integral domain R2 is a field and let x be an arbitrary
element of the set R1 \ {0}. We can write

(x−1)n + r1(x−1)n−1 + · · ·+ rn = 0

since the element x−1 is integral over the integral domain R1. The element

x−1 = −(r1 + · · ·+ rnx
n−1)

belongs to the integral domain R1.

Theorem 3.2.1
Suppose that R is an integral domain and let S be a finite set that is algebraic
over the field Q(R). There exists an element x of the set R \ {0} such that the
integral domain R[x−1][S] is integral over the integral domain R[x−1].

Proposition 3.2.8
An ideal P of a ring R is prime if and only if the ring R/P is an integral domain.

Proposition 3.2.9
An ideal M of a ring R is maximal if and only if the ring R/M is a field.

Proposition 3.2.10
Any algebraically closed field is infinite.

Proof. It is sufficient to show that the algebraic closure of the field Fp is infinite
for any prime number p. The algebraic closure of the field Fp is the algebraic
closure of the field Fpn for any positive integer n.

Proposition 3.2.11
Suppose that F is a field. We have

F[x][
1

f(x)
] 6= F(x)

for any element f(x) of the set F[x] \ {0}.
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Proof. We have

F[x][
1

f(x)
] = lim

n→∞

F[x]

f(x)n
. (3.1)

There exists an element x0 of the algebraic closure F such that we have f(x0) 6= 0
since the algebraic closure F is infinite by Proposition 3.2.10. We write f0(x)
for the minimal polynomial of the element x0 over the field F. Suppose that
the element f0(x)−1 is contained in the integral domain (3.1). There exists an
element g(x) of the integral domain F[x] such that we have

1

f0(x)
=

g(x)

f(x)n
.

We have f(x0)n = f0(x0)g(x0) = 0. This is a contradiction.

Theorem 3.2.2
Suppose that E is an extension field of a field F. The field E is finite dimensional
over the field F if the ring E is finitely generated over the field F.

Proof. We can write E = F[x1, . . . , xn] and the proof is by induction on the
nonnegative integer n. Suppose that we have n > 0. The field E is finite
dimensional over the field F(x1) by the induction hypothesis. It is sufficient to
show that the element x1 is algebraic over the field F. Suppose contrary. There
exists an element f(x1) of the set F[x1] \ {0} such that the field E is integral
over the integral domain

F[x1][
1

f(x1)
] 6= F(x1) (3.2)

by Theorem 3.2.1. The integral domain (3.2) is a field by Proposition 3.2.7.
This is a contradiction.

Proposition 3.2.12
Suppose that V is a finite dimensional vector space over an algebraically closed
F and let M be a maximal ideal of the algebra S(V ∗). We have S(V ∗)/M = F.

Proof. We can write S(V ∗) = F[x1, . . . , xn]. We have

F[x1, . . . , xn]

M
= F[x1 +M, . . . , xn +M ].

The field F[x1+M, . . . , xn+M ] is finite dimensional over the field F by Theorem
3.2.2. We have F[x1 + M, . . . , xn + M ] = F since the field F is algebraically
closed.

Proposition 3.2.13
Suppose that F is a field and let ν be a point of the space Fn.

1. We have

(x1 − ν1, . . . , xn − νn) = F[x1](x1 − ν1) + · · ·+ F[x1, . . . , xn](xn − νn)

=
{
f(x) ∈ F[x1, . . . , xn] : f(ν) = 0

}
. (3.3)
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2. The ideal (3.3) is maximal.

Proof. The ideal (3.3) is maximal since we have

F[x1, . . . , xn]

(x1 − ν1, . . . , xn − νn)
= F.

Proposition 3.2.14
Any finite dimensional vector space is contained in the set of maximal ideals of
the symmetric algebra of the dual space.

Theorem 3.2.3
Any finite dimensional vector space over an algebraically closed field is the set
of maximal ideals of the symmetric algebra of the dual space.

Proposition 3.2.15
Suppose that the ring R2 is integral over the ring R1 and let S be a proper
multiplicative subset of the ring R1. The ring R2S

−1 is an integral extension of
the ring R1S

−1.
R1 −−−−→ R2y y

R1S
−1 −−−−→ R2S

−1

Proposition 3.2.16
Suppose that the ring R2 is integral over the ring R1 and let J be an ideal of
the ring R2. The ring R2/J is an integral extension of the ring R1/R1 ∩ J .

R1 −−−−→ R2y y
R1/R1 ∩ J −−−−→ R2/J

Proposition 3.2.17
Suppose that the ring R2 is integral over the ring R1 and let P be a prime
ideal of the ring R2. The ideal P is maximal if and only if the ideal R1 ∩ P is
maximal.

R1 −−−−→ R2y y
R1/R1 ∩ P −−−−→ R2/P

Definition 3.2.2
A ring is said to be local if it has a unique maximal ideal.

Proposition 3.2.18
Suppose that P is a prime ideal of a ring R.

1. The set R \ P is a proper multiplicative subset of the ring R.



96 CHAPTER 3. ROOT SYSTEMS AND SEMISIMPLE LIE ALGEBRAS

2. The ring R(R \ P )−1 is local and let M be its unique maximal ideal. We
have

Q(R/P ) = R(R \ P )−1/M.

Proposition 3.2.19
Any proper ideal of a ring is contained in a maximal ideal.

Corollary 3.2.1
Any nontrivial ring has a maximal ideal.

Theorem 3.2.4
Suppose that the ring R2 is integral over the ring R1 and let P1 be a prime ideal
of the ring R1. There exists a prime ideal P2 of the ring R2 such that we have
P1 = R1 ∩ P2.

Proof.
R1 −−−−→ R2

f1

y yf2
R1(R1 \ P1)−1 −−−−→ R2(R1 \ P1)−1

The ring R2(R1 \ P1)−1 has a maximal ideal M2 and let

M1 = R1(R1 \ P1)−1 ∩M2

be the unique maximal ideal of the local ring R1(R1 \ P1)−1.

R1 −−−−→ R2

f1

y yf2
R1(R1 \ P1)−1 −−−−→ R2(R1 \ P1)−1y y

R1(R1 \ P1)−1/M1 −−−−→ R2(R1 \ P1)−1/M2

The ideal P2 = f−1
2 (M2) is prime and we have P1 = f−1

1 (M1) = R1 ∩ P2.

R1/P1 −−−−→ R2/P2y y
R1(R1 \ P1)−1/M1 −−−−→ R2(R1 \ P1)−1/M2

Theorem 3.2.5
A homomorphism of a ring into a field extends to a homomorphism of any
integral extension into the algebraic closure.
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Proof. Suppose that the ring R2 is integral over the ring R1 and let f be a
homomorphism of the ring R1 into a field F.

R1 −−−−→ R2

f

y
F

The ideal P1 = ker f is prime and there exists a prime ideal P2 of the ring R2

such that we have P1 = R1 ∩ P2. The field Q(R2/P2) is algebraic over the field
Q(R1/P1). The algebraic closure of the field Q(R1/P1) is the algebraic closure
of the field Q(R2/P2).

R1 −−−−→ R2y y
R1/P1 −−−−→ R2/P2y y

Q(R1/P1) −−−−→ Q(R2/P2) −−−−→ Q(R1/P1) −−−−→ F

Proposition 3.2.20
Suppose that S is a proper multiplicative subset of an integral domain R. The
integral domain RS−1 is a subring of the field Q(R) and we have RS−1 =
R[S−1].

Proposition 3.2.21
Suppose that A is an algebra over a field and let S be a proper multiplicative
subset. The ring AS−1 is an algebra and the canonical mapping of the algebra
A into the algebra AS−1 is a homomorphism of algebras.

Theorem 3.2.6
Suppose that F is an algebraically closed field and let

f(x) =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
be an element of the space F[x1, . . . , xn]n that is algebraically independent over
the field F. The set f(Fn) has nonempty Zariski interior.

Proof. The element f(x) is a transcendence basis of the field F(x) over the field
F since the transcendence degree of the field F(x) over the field F is n. There
exists an element g(x) of the set F[x] \ {0} such that the integral domain

F
[
x,

1

g ◦ f(x)

]
is integral over the integral domain

F
[
f(x),

1

g ◦ f(x)

]
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by Theorem 3.2.1 since the field F(x) is algebraic over the field F
(
f(x)

)
. We

show that the set f(Fn) contains the nonempty Zariski open set Fn \ g−1(0).
Suppose that ν is an arbitrary element of the set Fn \ g−1(0). There exists a
unique homomorphism of algebras

F
[
f(x)

]
→ F, f(x) 7→ ν.

The homomorphism extends uniquely to a homomorphism of algebras

F
[
f(x),

1

g ◦ f(x)

]
→ F,

1

g ◦ f(x)
7→ 1

g(ν)
.

The homomorphism extends to a homomorphism of algebras

F
[
x,

1

g ◦ f(x)

]
→ F, x 7→ µ.

by Theorem 3.2.5 since the field F is algebraically closed. We have ν = f(µ).

Corollary 3.2.2
Suppose that V is a finite dimensional vector space over an algebraically closed
field of characteristic 0 and let f be an element of the space S(V ∗) ⊗ V such
that we have det f ′ 6= 0. The set f(V ) has nonempty Zariski interior.

Proof. By Proposition 3.1.20.

Proposition 3.2.22
Any vector space over an infinite field is not a finite union of proper subspaces.

3.3 Cartan Subalgebras

Proposition 3.3.1
Suppose that f is a homomorphism of a Lie algebra into an algebra. We have(

f(x)− (µ+ ν)
)
f
(
(adx− µ)ny

)
= f

(
(adx− µ)n+1y

)
+ f

(
(adx− µ)ny

)(
f(x)− ν

)
for any elements x and y of the Lie algebra and for any scalars µ and ν for any
nonnegative integer n.

Proof. We have(
f(x)− (µ+ ν)

)
f
(
(adx− µ)ny

)
= f(x)f

(
(adx− µ)ny

)
− (µ+ ν)f

(
(adx− µ)ny

)
= f

(
(adx− µ)n+1y

)
+ f

(
(adx− µ)ny

)(
f(x)− ν

)
.
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Proposition 3.3.2
Suppose that f is a homomorphism of a Lie algebra into an algebra. We have(

f(x)− (µ+ ν)
)n
f(y) =

n∑
k=0

(
n

k

)
f
(
(adx− µ)ky

)(
f(x)− ν

)n−k
for any elements x and y of the Lie algebra and for any scalars µ and ν for any
nonnegative integer n.

Proof. The proof is by induction on the nonnegative integer n. Suppose that
we have n > 0. We have(
f(x)− (µ+ ν)

)n
f(y)

=
(
f(x)− (µ+ ν)

) n−1∑
k=0

(
n− 1

k

)
f
(
(adx− µ)ky

)(
f(x)− ν

)n−k−1

=

n−1∑
k=0

(
n− 1

k

)(
f
(
(adx− µ)k+1y

)(
f(x)− ν

)n−k−1
+ f

(
(adx− µ)ky

)(
f(x)− ν

)n−k)
=

n∑
k=0

(
n

k

)
f
(
(adx− µ)ky

)(
f(x)− ν

)n−k
.

Proposition 3.3.3
Suppose that ρ is a representation of a nilpotent Lie algebra.

lim
n→∞

ker
(
ρ(x)− ν

)n
(3.4)

is an invariant subspace for the representation ρ for any element x of the Lie
algebra and for any scalar ν.

Proof. Suppose that v is an arbitrary element of the subspace (3.4). We have(
ρ(x)− ν

)n
ρ(y)v =

n∑
k=0

(
n

k

)
ρ
(
(adx)ky

)(
ρ(x)− ν

)n−k
v = 0

eventually for any element y of the Lie algabra since we have (adx)k = 0
eventually.

Definition 3.3.1
A one dimensional representation µ of a Lie algebra is called a weight of a
representation ρ if the subspace⋂

x

lim
n→∞

ker
(
ρ(x)− µ(x)

)n 6= {0}.
Proposition 3.3.4

Suppose that x is a linear mapping on a finite dimensional vector space V over
an algebraically closed field F. We have

V =
⊕
ν∈F

lim
n→∞

ker(x− ν)n.
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Definition 3.3.2
A representation of a Lie algebra on a nontrivial vector space V is said to be
indecomposable if there do not exist nontrivial invariant subspaces V1 and V2

such that we have V = V1 ⊕ V2.

Proposition 3.3.5
Suppose that ρ is a finite dimensional indecomposable representation of a nilpo-
tent Lie algebra over an algebraically closed field of characteristic 0. There
exists a unique weight of the representation ρ.

Proof. There exists a unique scalar µ(x) such that the invariant subspace

lim
n→∞

ker
(
ρ(x)− µ(x)

)n 6= {0}
for any element x of the Lie algebra. It is sufficient to show that the functional µ
is a homomorphism of Lie algebras. The functional µ is a homomorphism of Lie
algebras since each ρ(x)−µ(x) is strictly upper triangular by Lie’s theorem.

Theorem 3.3.1
Suppose that ρ is a representation of a nilpotent Lie algebra over an algebraically
closed field of characteristic 0 on a finite dimensional vector space V . We have

V =
⊕

µ is a weight

⋂
x

lim
n→∞

ker
(
ρ(x)− µ(x)

)n
.

Proposition 3.3.6
The normaliser of a Lie subalgebra is a Lie subalgebra.

Proposition 3.3.7
A Lie subalgebra is an ideal of its normaliser.

Definition 3.3.3
A nilpotent Lie subalgebra that contains the normaliser of the Lie subalgebra
is called a Cartan subalgebra.

Definition 3.3.4
Suppose that x is an element of a Lie algebra g . We define a subspace

gxν = lim
n→∞

ker(adx− ν)n

for any scalar ν.

Proposition 3.3.8
Suppose that x is an element of a Lie algebra g . The set

[
gxµ , g

x
ν

]
is contained

in the subspace gxµ+ν for any scalars µ and ν.

Proof. Suppose that (y, z) is an arbitrary element of the set gxµ × gxν . We have

(
adx− (µ+ ν)

)n
[y, z] =

n∑
k=0

(
n

k

)[
(adx− µ)ky, (adx− ν)n−kz

]
= 0

eventually.
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Proposition 3.3.9
An element x of a Lie algebra g belongs to the Lie subalgebra gx0 .

Proposition 3.3.10
Suppose that x is an element of a Lie algebra g . The Lie subalgebra gx0 contains
the normaliser of the Lie subalgebra gx0 .

Proof. Suppose that y is an element of the normaliser of the Lie subalgebra gx0 .
The element (adx)(y) belongs to the Lie subalgebra gx0 . The element y belongs
to the Lie subalgebra gx0 .

Definition 3.3.5
Suppose that g is a finite dimensional Lie algebra over an algebraically closed
field. We define rank g = minx dim gx0 .

Definition 3.3.6
An element x of a finite dimensional Lie algebra g over an algebraically closed
field is said to be regular if we have dim gx0 = rank g .

Proposition 3.3.11
The set of regular elements of a finite dimensional Lie algebra over an alge-
braically closed field is a nonempty Zariski open set.

Proof. There exists a unique element f of the set S(g∗) \ {0} such that the
characteristic polynomial of the derivation adx is given by

det(t− adx) = tdim g + · · ·+ f(x)trank g

for any element x of the Lie algebra g . The set of regular elements is the
nonempty Zariski open set g \ f−1(0).

Theorem 3.3.2
Suppose that g is a finite dimensional Lie algebra over an algebraically closed
field and let x be its regular element. The Lie subalgebra gx0 is a Cartan subal-
gebra.

Proof. Suppose that x is an arbitrary element of the Lie algebra g . The Zariski
open set

U0 =
{
x′ ∈ gx0 : adgx0

x′ is not nilpotent
}

is empty if and only if the Lie subalgebra gx0 is nilpotent by Engel’s theorem.
The Zariski open set

U⊥0 =
⋂
ν∈F×

{
x′ ∈ gx0 : adgxν

x′ is regular
}

is not empty since it contains the element x. It is sufficient to show that the
element x is not regular if the Lie subalgebra gx0 is not nilpotent. The nonempty
Zariski open sets U0 and U⊥0 have a point in common by Proposition 3.1.7 and
Proposition 3.2.10. We have rank g < dim gx0 .
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Corollary 3.3.1
Any finite dimensional Lie algebra over an algebraically closed field has a Cartan
subalgebra.

Proposition 3.3.12
Suppose that x and y are nilpotent elements of an algebra with identity over
a field of characteristic 0 such that we have [x, y] = 0. The element x + y is
nilpotent and we have exp(x+ y) = (expx)(exp y).

Proof. There exists a nonnegative integer m such that we have xm+1 = ym+1 =
0 since the elements x and y are nilpotent. We have

exp(x+ y) =

2m∑
n=0

1

n!

n∑
k=0

(
n

k

)
xkyn−k

=

2m∑
m=0

n∑
k=0

xk

k!

yn−k

(n− k)!

=

m∑
n=0

xn

n!

m∑
n=0

yn

n!
= (expx)(exp y)

since we have [x, y] = 0.

Proposition 3.3.13
Suppose that x is a nilpotent elements of an algebra with identity over a field
of characteristic 0. The element expx is invertible.

Proof. We have (expx)−1 = exp(−x).

Proposition 3.3.14
Suppose that D is a nilpotent derivation of a Lie algebra over a field of charac-
teristic 0. The element expD is an automorphism of the Lie algebra.

Proof. It is sufficient to show that the element expD is a homomorphism of Lie
algebras. We write m for the Lie bracket. We have

D ◦m = m ◦ (D ⊗ 1 + 1⊗D)

since we have

D ◦m(x⊗ y) = m(Dx⊗ y + x⊗Dy)

= m ◦ (D ⊗ 1 + 1⊗D)(x⊗ y)

for any elements x and y of the Lie algebra. We have

exp(D ⊗ 1 + 1⊗D) = (expD)⊗ (expD)
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since the elements D ⊗ 1 and 1⊗D are nilpotent and commuting. We have

(expD) ◦m =

∞∑
n=0

Dn ◦m
n!

=

∞∑
n=0

m ◦ (D ⊗ 1 + 1⊗D)n

n!

= m ◦ exp(D ⊗ 1 + 1⊗D) = m ◦ (expD)⊗ (expD).

Definition 3.3.7
We write Der g for the set of derivations of a Lie algebra g .

Proposition 3.3.15
Suppose that g is a Lie algebra. The set Der g is a Lie subalgebra of the Lie
algebra hom g .

Proof. Suppose that D1 and D2 are derivations of the Lie algebra g . We have

[D1, D2][x, y] = (D1 ◦D2 −D2 ◦D1)[x, y]

= D1

(
[D2x, y] + [x,D2y]

)
−D2

(
[D1x, y] + [x,D1y]

)
=
[
[D1, D2]x, y

]
+
[
x, [D1, D2]y

]
for any elements x and y of the Lie algebra g .

Definition 3.3.8
Suppose that g is a Lie algebra. The Lie algebra Der g is called the derivation
algebra of the Lie algebra g .

Proposition 3.3.16
The adjoint representation of a Lie algebra g is a homomorphism of Lie algebras
of the Lie algebra g into the derivation algebra Der g .

Definition 3.3.9
The group of inner automorphisms of a Lie algebra over a field of characteristic
0 is the group generated by the set{

exp(adx) : x is an element of the Lie group

such that the derivation adx is nilpotent
}
.

Definition 3.3.10
We write Inn g for the group of inner automorphisms of a Lie algebra g .

Proposition 3.3.17
A proper Lie subalgebra of a nilpotent Lie algebra is a proper ideal of the
normaliser of the Lie subalgebra.

Proposition 3.3.18
A Cartan subalgebra of a Lie algebra is a maximal nilpotent Lie subalgebra.
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Proposition 3.3.19
Suppose that g is a finite dimensional Lie algebra over an algebraically closed
field and let x be its regular element contained in a Cartan subalgebra h. We
have h = gx0 .

Proof. The Cartan subalgebra h is contained in the Cartan subalgebra gx0 by
Engel’s theorem. We have h = gx0 by Proposition 3.3.18.

Proposition 3.3.20
Suppose that h is a nilpotent Lie subalgebra of a finite dimensional Lie algebra
g over an algebraically closed field of characteristic 0.

1. We have the weight space decomposition

g =
⊕

µ∈(h/Dh)∗

gh
µ , gh

µ =
⋂
x∈h

gxµ(x), gxµ(x) = lim
n→∞

ker
(
adx− µ(x)

)n
.

2. The set
[
gh
µ , g

h
ν

]
is contained in the subspace gh

µ+ν for any one dimensional
representations µ and ν.

3. The nilpotent Lie algebra h is a Lie subalgebra of the Lie algebra gh
0 .

Proof. 3. By Engel’s theorem.

Proposition 3.3.21
Suppose that h is a Cartan subalgebra of a finite dimensional Lie algebra g over
an algebraically closed field of characteristic 0. We have h = gh

0 .

Proof. We have

adgh
0
x =

(
adh x ∗

0 adgh
0/h

x

)
for any element x of the Cartan subalgebra h. The element adgh

0/h
x is nilpo-

tent for any element x of the Cartan subalgebra h since the element adgh
0
x is

nilpotent. Suppose that the Cartan subalgebra h is a proper Lie subalgebra of
the Lie algebra gh

0 . We have⋂
x∈h

ker adgh
0/h

x 6= {0}

by Engel’s theorem. This is a contradiction.

Proposition 3.3.22
Suppose that h is a nilpotent Lie subalgebra of a finite dimensional Lie algebra
g over an algebraically closed field of characteristic 0. We have

gh
µ1
⊥ gh

µ2

if we have µ1 + µ2 6= 0.
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Proof. Suppose that (x1, x2) is an arbitrary element of the space gh
µ1
× gh

µ2
. We

have B(x1, x2) = 0 since the space (adx1)(adx2)gh
µ is contained in the space

gh
µ+µ1+µ2

for any weight µ.

Corollary 3.3.2
Suppose that h is a nilpotent Lie subalgebra of a finite dimensional semisimple
Lie algebra g over an algebraically closed field of characteristic 0. The restriction
of the Killing form to the space gh

0 × gh
0 is nondegenerate.

Corollary 3.3.3
Suppose that h is a Cartan subalgebra of a finite dimensional semisimple Lie
algebra over an algebraically closed field of characteristic 0. The restriction of
the Killing form to the space h × h is nondegenerate.

Theorem 3.3.3
Suppose that h is a Cartan subalgebra of a finite dimensional Lie algebra g over
an algebraically closed field of characteristic 0. The set (Inn g)(h) has nonempty
Zariski interior.

Proof. Suppose that ν is a nonzero weight and let x be an element of the space
gh
ν . We show that the derivation adx is nilpotent. We have (adx)ngh

µ = {0}
eventually for any weight µ since we have gh

µ+nν = {0} eventually.

We write

h⊥ =
⊕

µ is a nonzero weight

gh
µ

and let (xk)nk=1 be a basis of the subspace h⊥ contained in the set

⋃
µ is a nonzero weight

gh
µ .

We define an element f of the space S(g∗)⊗ g by

f(x0 +

n∑
k=1

νkxk) = exp(−ν1 adx1) · · · exp(−νn adxn)(x0)

for any element (x0, ν) of the set h ×Fn. The set (Inn g)(h) contains the image
of the mapping f . Suppose that x is an element of the Cartan subalgebra h.
We have

f ′(x) =

(
1 0
0 adx

)
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since we have

f ′(x)

(
x0∑n

k=1 νkxk

)
=

(
d

dt

)
t=0

f
(
x+ t(x0 ⊕

n∑
k=1

νkxk)
)

= x0 −
n∑
k=1

νk(adxk)(x)

= x0 ⊕ (adx)(

n∑
k=1

νkxk)

=

(
1 0
0 adx

)(
x0∑n

k=1 νkxk

)
for any element x0 ⊕

∑n
k=1 νkxk of the Lie algebra g = h ⊕ h⊥. We have

det f ′(x) 6= 0 if and only if the element x belongs to the set

h \
⋃

µ is a nonzero weight

kerµ. (3.5)

The set (3.5) is not empty by Proposition 3.2.22. The image of the mapping f
has nonempty Zariski interior by Corollary 3.2.2.

Theorem 3.3.4 (Chevalley)
The group of inner automorphisms of a finite dimensional Lie algebra over an
algebraically closed field of characteristic 0 acts on the set of Cartan subalgebras
transitively.

Proof. The Lie algebra g has a Cartan subalgebra by Corollary 3.3.1. Suppose
that h1 and h2 are arbitrary Cartan subalgebras of the Lie algebra g . The set

(Inn g)(h1) ∩
{

regular elements of the Lie algebra g
}
∩ (Inn g)(h2)

is not empty by Proposition 3.3.11 and Theorem 3.3.3.

Proposition 3.3.23
1 Suppose that h is an ideal of a finite dimensional nilpotent Lie algebra g . We
have h = {0} if we have h ∩ ker adg = {0}.

Proposition 3.3.24
Any finite dimensional semisimple Lie algebra over an algebraically closed field
of characteristic 0 has a maximal toral subalgebra.

Proposition 3.3.25
Suppose that x = S + N is a Jordan decomposition of a linear mapping on
a finite dimensional vector space over an algebraically closed field. We have
kerx = kerS ∩ kerN .

Proof. By Corollary 2.3.2.

1[3, Lemma 3.3].
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Proposition 3.3.26
Suppose that h is a toral subalgebra of a finite dimensional semisimple Lie
algebra g over an algebraically closed field of characteristic 0. We have the
weight space decomposition

g =
⊕
µ∈h∗

gh
µ , gh

µ =
⋂
x∈h

gxµ(x), gxµ(x) = ker
(
adx− µ(x)

)
.

Theorem 3.3.5
2 A Lie subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is Cartan if and only if it is maximal
toral.

Corollary 3.3.4
A Lie subalgebra of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is Cartan if and only if it is toral and
maximal abelian.

Corollary 3.3.5
Suppose that h is a Cartan subalgebra of a finite dimensional semisimple Lie
algebra g over an algebraically closed field of characteristic 0.

1. We have the weight space decomposition

g = h ⊕
⊕

µ∈h∗\{0}

gµ, gµ =
⋂
x∈h

ker
(
adx− µ(x)

)
.

2. We have
h = g0 =

⋂
x∈h

ker(adx).

3.4 Lie Algebras M(2,F) ∩ ker tr

Definition 3.4.1
Suppose that F is a field and let (en)dn=1 be the dual basis of the canonical basis
(en)dn=1 of the vector space Fd. We write eji = ei ⊗ ej for any (i, j).

Proposition 3.4.1
Suppose that F is a field and let d be a positive integer. The mapping

h 7→
d∑

n=1

(d− 2n+ 1)enn, x 7→
d−1∑
n=1

(d− n)en+1
n , y 7→

d−1∑
n=1

nenn+1 (3.6)

into the Lie algebra M(d,F) defines a representation of the Lie algebra

M(2,F) ∩ ker tr .

2[3, Proposition 8.2].
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Remark 3.4.1
We have

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

Proof. We define

f(h) =

d∑
n=1

(d− 2n+ 1)enn, f(x) =

d−1∑
n=1

(d− n)en+1
n , f(y) =

d−1∑
n=1

nenn+1.

It is sufficient to show that we have[
f(h), f(x)

]
= 2f(x),

[
f(h), f(y)

]
= −2f(y),

[
f(x), f(y)

]
= f(h).

We have

[
f(h), f(x)

]
=
[ d∑
n=1

(d− 2n+ 1)enn,

d−1∑
n=1

(d− n)en+1
n

]
=

d−1∑
n=1

(d− 2n+ 1)(d− n)en+1
n −

d−1∑
n=1

(d− 2n− 1)(d− n)en+1
n

= 2

d−1∑
n=1

(d− n)en+1
n = 2f(x).

We have

[
f(h), f(y)

]
=
[ d∑
n=1

(d− 2n+ 1)enn,

d−1∑
n=1

nenn+1

]
=

d−1∑
n=1

(d− 2n− 1)nenn+1 −
d−1∑
n=1

(d− 2n+ 1)nenn+1

= −2

d−1∑
n=1

nenn+1 = −2f(y).

We have

[
f(x), f(y)

]
=
[d−1∑
n=1

(d− n)en+1
n ,

d−1∑
n=1

nenn+1

]
=

d−1∑
n=1

(d− n)n
(
enn − en+1

n+1

)
=

d∑
n=1

(d− n)nenn −
d∑

n=1

(d− n+ 1)(n− 1)enn

=

d∑
n=1

(d− 2n+ 1)enn = f(h).
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Proposition 3.4.2
The representations (3.6) are irreducible if the field F is of characteristic 0.

Remark 3.4.2
Suppose that F is a field. The mapping

h 7→ −h, x 7→ y, y 7→ x

defines an automorphism of the Lie algebra M(2,F) ∩ ker tr.

Proposition 3.4.3
Suppose that F is a field and let f be a homomorphism of the Lie algebra
M(2,F) ∩ ker tr into an algebra over the field F. We have[

f(h), f(x)n
]

= 2nf(x)n,
[
f(h), f(y)n

]
= −2nf(y)n

for any positive integer n.

Proof. The proof is by induction on the positive integer n. Suppose that we
have n > 1. We have[

f(h), f(x)n
]

=
[
f(h), f(x)n−1

]
f(x) + f(x)n−1

[
f(h), f(x)

]
= 2nf(x)n.

By the above remark we have
[
f(−h), f(y)n

]
= 2nf(y)n.

Proposition 3.4.4
Suppose that F is a field and let f be a homomorphism of the Lie algebra
M(2,F) ∩ ker tr into an algebra with identity over the field F. We have[

f(x), f(y)n
]

= nf(y)n−1f(h)− n(n− 1)f(y)n−1

= nf(h)f(y)n−1 + n(n− 1)f(y)n−1

and we have [
f(y), f(x)n

]
= −nf(h)f(x)n−1 + n(n− 1)f(x)n−1

= −nf(x)n−1f(h)− n(n− 1)f(x)n−1

for any positive integer n.

Proof. The proof is by induction on the positive integer n. Suppose that we
have n > 1. We have[

f(x), f(y)n
]

=
[
f(x), f(y)n−1

]
f(y) + f(y)n−1f(h).

We have[
f(x), f(y)n−1

]
= (n− 1)f(y)n−2f(h)− (n− 1)(n− 2)f(y)n−2

by the induction hypothesis. We have

f(y)n−2f(h)f(y) = f(y)n−1f(h) + f(y)n−2
[
f(h), f(y)

]
= f(y)n−1f(h)− 2f(y)n−1.

We have
[
f(x), f(y)n

]
= nf(y)n−1f(h)− n(n− 1)f(y)n−1.
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Proposition 3.4.5
Suppose that F is an algebraically closed field of characteristic 0 and let f
be a finite dimensional irreducible representation of the Lie algebra M(2,F) ∩
ker tr. An eigenvector of the endomorphism f(h) contained in the kernel of the
endomorphism f(x) is called a primitive vector of the irreducible representation
f . There exists a primitive vector of the irreducible representation f .

Proof. The endomorphism f(h) has an eigenvector ξ with eigenvalue ν since the
field F is algebraically closed. We have

f(h)f(x)nξ = νf(x)nξ +
[
f(h), f(x)n

]
ξ

= (ν + 2n)f(x)nξ

for any nonnegative integer n. We have eventually f(x)nξ = 0 since the field F
is of characteristic 0. We define

n = min
{
n ∈ N : f(x)nξ = 0

}
.

The vector f(x)n−1ξ is a primitive vector of the irreducible representation f .

Theorem 3.4.1
Suppose that F is an algebraically closed field of characteristic 0. A finite dimen-
sional irreducible representation of the Lie algebra M(2,F)∩ker tr is equivalent
to the irreducible representation (3.6).

Proof. There exists a primitive vector e of the irreducible representation f by
the previous proposition. We define

en =
1

(n− 1)!
f(y)n−1e

for any positive integer n.

3.5 Root Systems

Proposition 3.5.1
Suppose that F is a field.

1. We have{
monic polynomials

}
'
{

nonzero ideals of F[x]
}
, f(x) 7→ F[x]f(x).

2. We have{
monic irreducible polynomials

}
'
{

nonzero prime ideals of F[x]
}

=
{

maximal ideals of F[x]
}
.

Proposition 3.5.2
Suppose that F is an algebraically closed field.
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1. Suppose that f(x) is an element of F[x]. We have

f(x) is an irreducible polynomial⇔ deg f(x) = 1.

2. We have

F '
{

monic irreducible polynomials
}
, ν 7→ x− ν.

Proposition 3.5.3
Suppose that R is a commutative ring with identity.

1. A unital module over the algebra R[x] is a unital module over the ring R.

2. Suppose that M is a unital module over the ring R. We have

homM '
{

compatible unital module structures

over the algebra R[x] on the unital module M
}
.

Proposition 3.5.4
Suppose that x and y are elements of a commutative ring with identity. We
have (x)(y) = (xy).

Proposition 3.5.5
Suppose that x and y are elements of an integral domain. We have (x) = (y) if
and only if we have R×x = R×y.

Definition 3.5.1
An element x of a commutative ring with identity is called a prime element if
the principal ideal (x) is a nonzero prime ideal.

Theorem 3.5.1
We have {

nonzero ideals
}

= Z⊕{ nonzero prime ideals }
+

for a principal ideal domain.

Definition 3.5.2
Suppose that M is a unital module over an integral domain R. We define

t(M) = M ∩
{
x : the element 0 is contained in the set

(
R \ {0}

)
x
}
.

Proposition 3.5.6
Suppose that R is a principal ideal domain and let(

r1

r2

)
be an element of the set R2 \ {0}. There exists a greatest common divisor d
of the set {r1, r2} by Proposition 2.3.5. There exists a basis (e1, e2) of the free
module R2 such that we have (

r1

r2

)
= de1.



112 CHAPTER 3. ROOT SYSTEMS AND SEMISIMPLE LIE ALGEBRAS

Proof. We define

e1 = d−1

(
r1

r2

)
.

There exists an element e2 of the free module R2 such that we have

det(e1, e2) = 1.

The pair (e1, e2) is a basis of the free module R2 and we have(
r1

r2

)
= de1.

Theorem 3.5.2
Suppose that R is a principal ideal domain and let M be a submodule of a
free module Rn. There exists a unique decreasing sequence (Rk)mk=1 of nonzero
ideals such that there exists a basis (ek)nk=1 of the free module Rn with M =⊕m

k=1Rkek.

Proof. The proof is by induction on n.
Suppose that we have n > 0. We may assume that we have M 6= {0}. We

define an ideal

R1

(
(ek)nk=1

)
=
{
r1 ∈ R : M ∩ (r1e1 +

n⊕
k=2

Rek) is not empty
}

for a basis (ek)nk=1 of the module Rn. The set{
R1

(
(ek)nk=1

)
: (ek)nk=1 is a basis of the module Rn

}
(3.7)

has a maximal element

(r1) = R1 = R1(e1, . . . , en) 6= {0}

since the domain R is Noetherian.
There exists an element (rk)nk=2 of the module Rn−1 such that the element

r1e1 + r2e2 + · · ·+ rnen

belongs to the submodule M .
We proceed to show that the set {rk}nk=2 is contained in the ideal (r1). There

exists a greatest common divisor r of the set {r1, r2} by Proposition 2.3.5. There
exists an element P of the group M(2, R)× such that we have

r1e1 + r2e2 = r(P11e1 + P21e2)

by Proposition 3.5.6. The ideal (r) is contained in the ideal

R1

(
(e1, e2)P, e3, . . . , en

)
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and we have (r1) = (r) since the ideal (r1) is a maximal element of the set (3.7).
We may assume that the module R1e1 is contained in the module M since

we have

R1 = R1

(
e1 +

r2

r1
e2 + · · ·+ rn

r1
en, e2, . . . , en

)
.

We have

M = R1e1 ⊕ (M ∩
n⊕
k=2

Rek).

We may assume that there exists a decreasing sequence (Rk)mk=2 of nonzero
ideals such that we have M =

⊕m
k=1Rkek by the induction hypothesis. The

sequence (Rk)mk=1 is decreasing.

Corollary 3.5.1
Suppose that R is a principal ideal domain. A submodule of a free module Rn

is a free module whose rank is less than n.

Theorem 3.5.3
Suppose that M is a finitely generated unital module over a principal ideal
domain R.

1. There exists a unique decreasing sequence (Rk)mk=1 of nonzero proper ideals
such that we have

M =

m⊕
k=1

R/Rk ⊕Rn−m.

2. We have

t(M) =

m⊕
k=1

R/Rk.

Theorem 3.5.4
Suppose that M is a finitely generated unital module over a principal ideal
domain R.

1. There exists a unique element (m,n) of the set

Z⊕({ nonzero prime ideals }×N)
+ × Z+

such that we have

M =
⊕
P

∞⊕
n=1

(R/Pn)m(P,n) ⊕Rn.

2. We have

lim
n→∞

M ∩
{
x : Pnx = {0}

}
=

∞⊕
n=1

(R/Pn)m(P,n)

for ∀P .
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3. We have

t(M) =
⊕
P

lim
n→∞

M ∩
{
x : Pnx = {0}

}
=
⊕
P

∞⊕
n=1

(R/Pn)m(P,n).

Proof. We have

lim
n→∞

M ∩
{
x : Pnx = {0}

}
=

∞⊕
n=1

(R/Pn)m(P,n)

for ∀P . We may assume that

M =

m⊕
k=1

R/Pnk

for some 1 ≤ n1 ≤ · · · ≤ nm. The proof is by induction on

min
{
n : PnM = {0}

}
.

Suppose that we have

min
{
n : PnM = {0}

}
> 0.

We have

PM =

m⊕
k=1

R/Pnk−1.

The module M/PM = (R/P )m is a vector space over a field R/P .

Theorem 3.5.5
Suppose that F is an algebraically closed field and let V be a unital module over
the algebra F[x] whose dimension over the field F is finite.

1. There exists a unique element m of the set Z⊕(F×N)
+ such that we have

V =
⊕
ν∈F

∞⊕
n=1

(
F[x]

F[x](x− ν)n

)m(ν,n)

.

2. We have

lim
n→∞

ker(x− ν)n =

∞⊕
n=1

(
F[x]

F[x](x− ν)n

)m(ν,n)

for ∀ν.
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3. The finite sequence (
(x− ν)n−k

)n
k=1

is a basis of the vector space
F[x]

F[x](x− ν)n
over the field F and we have

x
(
(x− ν)n−k

)n
k=1

=
(
(x− ν)n−k

)n
k=1

ν +


1

. . .

1




for ∀(ν, n).

Theorem 3.5.6 (Hamilton-Cayley)
Suppose that x is a linear mapping on a finite dimensional vector space over a
field and let f be its characteristic polynomial. We have f(x) = 0.

Proof. We may assume that the field is algebraically closed and we have

x = ν +


1

. . .

1


for some element ν of the field by Theorem 3.5.5. We have

f(x) = (x− ν)n =


1

. . .

1


n

= 0.

Definition 3.5.3
Suppose that F is a field of characteristic 0 and let H be a finite dimensional
vector space over the field F. Suppose that σ is a linear mapping on the vector
space H and let ξ be an element of the set H \ {0}. The linear mapping σ is
called a reflection along the element ξ if we have

codim ker(σ − 1) = 1, (σ + 1)(ξ) = 0.

Proposition 3.5.7
Suppose that the linear mapping σ is a reflection along the element ξ. We have

H = ker(σ − 1)⊕ Fξ

and we have σ2 = 1.

Proposition 3.5.8
Suppose that F is a field of characteristic 0 and let H be a finite dimensional
vector space over the field F. Suppose that ∆ is a finite subset of the space H
with H = span ∆ and let ξ be an element of the set H \ {0}. There exists at
most one reflection σξ along the element ξ with σξ(∆) = ∆.
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Proof. Suppose that σ1 and σ2 are reflections along the element ξ with σ1(∆) =
σ2(∆) = ∆ and let σ = σ1 ◦ σ2. We have σn = 1 for some positive integer n
since we have σ(∆) = ∆. The minimal polynomial f(x) of the linear mapping
σ does not have a multiple root since it divides the polynomial xn−1. We have
f(x) = x− 1 since the polynomial (x− 1)dimH is the characteristic polynomial
of the linear mapping σ.

Definition 3.5.4
Suppose that F is a field of characteristic 0 and let H be a finite dimensional
vector space over the field F. A finite subset ∆ of the set H \ {0} is called a
root system if it satisfies the following.

1. We have H = span ∆.

2. There exists a reflection σξ along the element ξ with σξ(∆) = ∆ for any
element ξ of the set ∆.

3. The element η − σξ(η) belongs to the set Zξ for any element (ξ, η) of the
set ∆2.

Proposition 3.5.9
Suppose that ξ is an element of a root system ∆. There exists a unique element
ξ∗ of the vector space (span ∆)∗ such that we have σξ = 1− ξ ⊗ ξ∗.

Proposition 3.5.10
Suppose that ξ is an element of a root system. We have ξ∗(ξ) = 2.

Proposition 3.5.11
Suppose that ξ and η are elements of a root system. The element ξ∗(η) is an
integer.

Proposition 3.5.12
Suppose that ξ is an element of a root system ∆. We have

∆ ∩ 〈ξ〉 =
{
±ξ
}
,

{
±ξ

2
,±ξ

}
,
{
±ξ,±2ξ

}
.

Proof. Suppose that x is a scalar such that the element xξ belongs to the root
system ∆. The scalars 2x and 2x−1 are integers since the element

2xξ = xξ − σξ(xξ)

belongs to the set Zξ. We have

x = ±1

2
,±1,±2.

Definition 3.5.5
A root system ∆ is said to be reduced if we have

∆ ∩ 〈ξ〉 =
{
±ξ
}

for any element ξ of the root system ∆.
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Definition 3.5.6
Suppose that ∆ is a root system. The subgroup of the finite group

(hom span ∆)× ∩
{

permutations of the root system ∆
}

generated by the set{
σξ : ξ is an element of the root system ∆

}
is called the Weyl group and denoted by W (∆).

Proposition 3.5.13
Suppose that ∆ is a real root system. There exists an inner product on the real
vector space span ∆ such that we have∥∥σ(ξ)

∥∥ = ‖ξ‖

for any element (σ, ξ) of the set W (∆)× span ∆.

Proof. Suppose that

(span ∆)2 → R, (ξ, η) 7→ (ξ, η)′

is an arbitrary inner product on the real vector space span ∆. The mapping

(span ∆)2 → R, (ξ, η) 7→ (ξ, η) =
∑

σ∈W (∆)

(
σ(ξ), σ(η)

)′
is an inner product on the real vector space span ∆ such that we have√(

σ(ξ), σ(ξ)
)

=
√

(ξ, ξ)

for any element (σ, ξ) of the set W (∆)× span ∆.

Proposition 3.5.14
Suppose that ∆ is a real root system. We have

ξ∗(η) =
2(ξ, η)

‖ξ‖2
, σξ(η) = η − 2(ξ, η)

‖ξ‖2
ξ

for any elements (ξ, η) of the set ∆× span ∆.

Proof. We have

(ξ, η) =
(
σξ(ξ), σξ(η)

)
=
(
−ξ, η − ξ∗(η)ξ

)
= −(ξ, η) + ξ∗(η)‖ξ‖2.

Proposition 3.5.15
Suppose that ∆ is a real root system. The set

∆∗ =

{
ξ∗ =

2ξ

‖ξ‖2
: ξ is an element of the root system ∆

}
is a real root system.
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Proof. The set ∆∗ is a finite subset of the set (span ∆)∗ \ {0}.

1. We have (span ∆)∗ = span ∆∗ by Proposition 3.5.14.

2. Suppose that ξ is an element of the root system ∆. The linear mapping

1− ξ∗ ⊗ ξ

is a reflection along the element ξ∗. We have

(1− ξ∗ ⊗ ξ)(∆∗) = ∆∗

since we have

(1− ξ∗ ⊗ ξ)(η∗)(ζ) = η∗(ζ)− η∗(ξ)ξ∗(ζ)

=
2(η, ζ)

‖η‖2
− 4(ξ, η)(ξ, ζ)

‖ξ‖2‖η‖2

=
2
(
σξ(η), ζ

)∥∥σξ(η)
∥∥2 = σξ(η)∗(ζ)

for any element (η, ζ) of the set ∆× span ∆.

3. The element

η∗ − σξ∗(η∗) = η∗(ξ)ξ∗

belongs to the set Zξ∗ for any element (ξ, η) of the set ∆2.

Proposition 3.5.16
Suppose that ∆ is a real root system.

1. Suppose that ξ is an element of the root system ∆. We have ξ∗∗ = ξ.

2. We have #∆ = #∆∗.

Proposition 3.5.17
Suppose that ∆ is a reduced real root system. The real root system ∆∗ is
reduced.

Proposition 3.5.18
Suppose that V is a finite dimensional vector space over a subfield of a field F.
We have (V ⊗ F)∗ = V ∗ ⊗ F.

Theorem 3.5.7
Suppose that ∆ is a complex root system. We have span ∆ = spanR ∆⊗C and
the set ∆ is a real root system.

Proof. We show that the set ∆ is a real root system. Suppose that ξ is an
element of the root system ∆. The real vector space spanR ∆ is invariant for the
real linear mapping σξ since we have σξ(∆) = ∆. We show that the restriction
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of the real linear mapping σξ to the invariant subspace spanR ∆ is a reflection
along the element ξ. It is sufficient to show that

dim
spanR ∆

ker(σξ − 1) ∩ spanR ∆
= 1.

Suppose that η is an element of the root system ∆. There exists a complex
number z such that the element η − zξ belongs to the set ker(σξ − 1) since we
have span ∆ = ker(σξ − 1) ⊕ Cξ. The complex number z is real since we have
ξ∗(η− zξ) = 0. The element η belongs to the set

(
ker(σξ − 1)∩ spanR ∆

)
⊕Rξ.

We show that we have span ∆ = spanR ∆⊗C. There exists a complex linear
mapping f of the space spanR ∆⊗C onto the space span ∆ with f(ξ ⊗ z) = zξ
for each (ξ, z). It is sufficient to show that the dual mapping of the mapping f
is surjective. The dual mapping f∗ is surjective since we have f∗(ξ∗) = ξ∗ ⊗ 1
for any element ξ of the root system ∆ and the set ∆∗ is a real root system.

Proposition 3.5.19
Any root system is a root system over any subfield.

Proposition 3.5.20
Any root system is a root system over any extension field.

Proposition 3.5.21
Suppose that ∆ is a real root system and let ξ and η be elements of the root
system ∆ such that we have Rξ ∩ Rη = {0}. We have

η∗(ξ) ξ∗(η) arccos
(ξ, η)

‖ξ‖‖η‖
0 0

π

2
1 1

π

3
‖ξ‖ = ‖η‖

−1 −1
2π

3
‖ξ‖ = ‖η‖

2 1
π

4
‖ξ‖ =

√
2‖η‖

−2 −1
3π

4
‖ξ‖ =

√
2‖η‖

3 1
π

6
‖ξ‖ =

√
3‖η‖

−3 −1
5π

6
‖ξ‖ =

√
3‖η‖

provided that we have
∣∣η∗(ξ)∣∣ ≥ ∣∣ξ∗(η)

∣∣.
Proof. We have

η∗(ξ)ξ∗(η) =
4(ξ, η)2

‖ξ‖2‖η‖2
= 0, 1, 2, 3.

Proposition 3.5.22
Suppose that ∆ is a real root system and let ξ and η be elements of the root
system ∆ such that we have Rξ ∩ Rη = {0}. The element ξ + η belongs to the
root system ∆ provided that we have (ξ, η) < 0.
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Proof. We may assume that we have ξ∗(η) = −1. The element

σξ(η) = −ξ∗(η)ξ + η = ξ + η

belongs to the root system ∆.

Definition 3.5.7
A subset S of a root system ∆ is called a basis if it satisfies the following.

1. The set S is a linear basis of the vector space span ∆.

2. The root system ∆ is contained in the set∑
ξ∈S

Z+ξ ∪
∑
ξ∈S

Z−ξ.

Definition 3.5.8
Suppose that S is a basis of a root system ∆. We define

∆+ =
∑
ξ∈S

Z+ξ ∩∆.

Proposition 3.5.23
Suppose that S is a basis of a root system ∆. We have ∆ = ∆+ t (−∆+).

Proposition 3.5.24
Suppose that S is a subset of a real inner product space H such that we have
ξ = η provided that ξ and η are elements of the subset S with (ξ, η) > 0.
Suppose that f is a linear functional on the real vector space H such that the
set f(S) is contained in the set (0,∞). The subset S is linearly independent.

Proof. Suppose that
(
(xk, ξk)

)m+n

k=1
is an element of the set

(
(0,∞) × S

)m+n

with #
{
ξk
}m+n

k=1
= m+ n and let

ξ =

m∑
k=1

xkξk =

m+n∑
k=m+1

xkξk.

We have ξ = 0 since we have

(ξ, ξ) =

m∑
i=1

m+n∑
j=m+1

xixj(ξi, ξj) ≤ 0.

We have m+ n = 0 since we have

0 = f(ξ) =

m∑
k=1

xkf(ξk) =

m+n∑
k=m+1

xkf(ξk).
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Proposition 3.5.25
Suppose that ∆ is a real root system. There exists a linear functional f on the
space span ∆ such that the set f(∆) does not contain the element 0.

Definition 3.5.9
Suppose that ∆ is a real root system and let f be a linear functional on the
space span ∆ such that the set f(∆) does not contain the element 0. We define

∆+
f = f−1

(
(0,∞)

)
∩∆, Sf = ∆+

f \ (∆+
f + ∆+

f ).

Proposition 3.5.26
Suppose that ∆ is a real root system and let f be a linear functional on the
space span ∆ such that the set f(∆) does not contain the element 0. We have
∆ = ∆+

f t (−∆+
f ).

Proposition 3.5.27
Suppose that ∆ is a real root system and let f be a linear functional on the real
vector space span ∆ such that the set f(∆) does not contain the element 0. We
have ξ = η provided that ξ and η are elements of the set Sf with (ξ, η) > 0.

Proof. Suppose that we have Rξ = Rη. We have ξ = η by Proposition 3.5.12.
Suppose that we have Rξ ∩Rη = {0}. The element ζ = ξ− η belongs to the set
∆ \∆+

f by Proposition 3.5.22. This is a contradiction.

Proposition 3.5.28
Suppose that ∆ is a real root system and let f be a linear functional on the
real vector space span ∆ such that the set f(∆) does not contain the element 0.
The set Sf is linearly independent.

Proof. By Proposition 3.5.24 and Proposition 3.5.27.

Theorem 3.5.8
Suppose that ∆ is a real root system and let f be a linear functional on the
real vector space span ∆ such that the set f(∆) does not contain the element 0.
The set Sf is a basis of the real root system ∆ and we have

∆+
f =

∑
ξ∈Sf

Z+ξ ∩∆.

Proof. We show that the set ∆+
f is contained in the set∑

ξ∈Sf

Z+ξ.

The proof is by induction on the number f(ξ) > 0. Suppose that ξ is an element
of the set ∆+

f and we have

f(ξ) = min
ξ∈∆+

f

f(ξ).
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The element ξ belongs to the set Sf . Suppose that ξ is an element of the set
∆+
f and we have

f(ξ) > min
ξ∈∆+

f

f(ξ).

We may assume that the element ξ belongs to the set ∆+
f + ∆+

f . The element
ξ belongs to the set ∑

ξ∈Sf

Z+ξ

by the induction hypothesis.

Corollary 3.5.2
Any real root system has a basis.

Proof. By Proposition 3.5.25.

Proposition 3.5.29
Suppose that S is a basis of a real root system ∆. There exists a linear functional
f on the real vector space span ∆ such that the set f(S) is contained in the set
{1}.

Proof. We define n = dim span ∆. Suppose that
{
δk
}n
k=1

is the dual basis of
the linear basis S and let

f =

n∑
k=1

δk.

The set f(S) is contained in the set {1}.

Proposition 3.5.30
Suppose that S is a basis of a real root system ∆ and let f be a linear functional
on the real vector space span ∆ such that the set f(S) is contained in the set
(0,∞). We have the following.

1. The set f(∆) does not contain the element 0.

2. We have ∆+ = ∆+
f and we have S = Sf .

Proof. The set ∆+ is contained in the set ∆+
f since the basis S is contained in

the set ∆+
f . Suppose that ξ is an element of the set ∆+

f \∆+. The element ξ

belongs to the set −∆+
f since we have ∆ = ∆+t(−∆+). This is a contradiction

since we have ∆ = ∆+
f t (−∆+

f ). We have ∆+ = ∆+
f . The basis S is contained

in the set ∆+ \ (∆+ + ∆+). The basis S is contained in the basis Sf since we
have ∆+ = ∆+

f . We have S = Sf .

Proposition 3.5.31
Suppose that S is a basis of a real root system ∆. We have S = ∆+\(∆++∆+).

Proof. There exists a linear functional f on the real vector space span ∆ such
that the set f(S) is contained in the set {1} by Proposition 3.5.29. We have
∆+ = ∆+

f and we have S = Sf by Proposition 3.5.30.
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Proposition 3.5.32
Suppose that S is a basis of a real root system ∆. We have ξ = η provided that
ξ and η are elements of the basis S with (ξ, η) > 0.

Proof. There exists a linear functional f on the real vector space span ∆ such
that the set f(S) is contained in the set {1} by Proposition 3.5.29. We have
S = Sf by Proposition 3.5.30. We have ξ = η provided that ξ and η are elements
of the basis S with (ξ, η) > 0 by Proposition 3.5.27.

Proposition 3.5.33
Suppose that ∆ is a real root system. We have{

bases of the real root system ∆
}

=
{
Sf : f is a linear functional on the real vector space span ∆

such that the set f(∆) does not contain the element 0
}
.

Proposition 3.5.34
Suppose that S is a basis of a real root system ∆ and let ξ be an element of the
set ∆+. There exists a finite sequence

{
ξk
}n
k=1

of elements of the basis S such
that the elements

ξ1, ξ1 + ξ2, . . . , ξ1 + · · ·+ ξn = ξ

belong to the set ∆+.

Proof. There exists a linear functional f on the real vector space span ∆ such
that the set f(S) is contained in the set {1} by Proposition 3.5.29. The proof
is by induction on the positive integer f(ξ). Suppose that we have f(ξ) = 1.
The element ξ1 = ξ belongs to the basis S. Suppose that we have f(ξ) > 1.
The element ξ does not belong to the basis S and the set S ∪ {ξ} is linearly
dependent. There exists an element ξ′ of the real vector space span ∆ such
that the element ξ − ξ′ belongs to the basis S and we have (ξ, ξ − ξ′) > 0 by
Proposition 3.5.24 and Proposition 3.5.32. We may assume that the element ξ
does not belong to the set R(ξ − ξ′). We have f(ξ′) = f(ξ) − 1 > 0 and the
element ξ′ belongs to the set ∆+ by Proposition 3.5.22. There exists a finite
sequence

{
ξk
}n
k=1

of elements of the basis S such that the elements

ξ1, ξ1 + ξ2, . . . , ξ1 + · · ·+ ξn = ξ′

belong to the set ∆+ by the induction hypothesis. We have

ξ1 + · · ·+ ξn + (ξ − ξ′) = ξ.

Proposition 3.5.35
Suppose that S is a basis of a reduced real root system ∆. We have

σξ
(
∆+ \ {ξ}

)
= ∆+ \ {ξ}

for any element ξ of the basis S.
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Proof. Suppose that we have S =
{
ξ1, . . . , ξn−1, ξ

}
and let

{
δ1, . . . , δn−1, δ

}
be

its dual basis. Suppose that η is an arbitrary element of the set ∆+ \ {ξ}. We

have
∑n−1
k=1 δ

k(η) > 0 since the real root system ∆ is reduced. The element
σξ(η) belongs to the set ∆+ \ {ξ} since we have

n−1∑
k=1

δk
(
σξ(η)

)
=

n−1∑
k=1

δk
(
η − ξ∗(η)ξ

)
=

n−1∑
k=1

δk(η) > 0.

Proposition 3.5.36
Suppose that S is a basis of a reduced real root system ∆. We have

σξ

(∑
∆+
)

=
∑

∆+ − 2ξ

for any element ξ of the basis S.

Definition 3.5.10
A subset C of a real vector space is called a cone if (0,∞)C = C.

Proposition 3.5.37
Suppose that S is a subset of a real vector space. There exists the convex cone
generated by the subset S.

Proposition 3.5.38
Suppose that (ξk)nk=1 is a finite sequence of a real vector space. The convex
cone generated by the set

{
ξk
}n
k=1

is given by

{ n∑
k=1

xkξk : (xk)nk=1 is an element of the set [0,∞)n \ {0}
}
.

Proposition 3.5.39
Suppose that (ξk)nk=1 is an independent finite sequence of a real vector space
and let C be the convex cone generated by the set

{
ξk
}n
k=1

. We have

C =

n⊔
k=1

(0,∞)ξk t
n⋃

m=2

{ m∑
k=1

ykηk : (yk)mk=1 is an element of the set (0,∞)m

and (ηk)mk=1 is an independent finite sequence of the convex cone C
}
.

Proposition 3.5.40
Suppose that S is a basis of a reduced real root system ∆. The linear basis

S∗ =
{
ξ∗ : ξ is an element of the basis S

}
is a basis of the reduced real root system ∆∗.

Proof. There exists a linear functional f on the real vector space span ∆ =
span ∆∗ such that the set f(S) is contained in the set (0,∞) by Proposition
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3.5.29. We write C for the convex cone generated by the basis S. The convex
cone C is generated by the set ∆+. We have

(∆∗)+
f = (∆+)∗ =

{
ξ∗ : ξ is an element of the set ∆+

}
.

The convex cone C is generated by the basis

S∗f = (∆∗)+
f \

(
(∆∗)+

f + (∆∗)+
f

)
= (∆+)∗ \

(
(∆+)∗ + (∆+)∗

)
since it is generated by the set (∆∗)+

f = (∆+)∗. We have{
(0,∞)ξ∗ : ξ∗ is an element of the linear basis S∗

}
=
{

(0,∞)ξ∗ : ξ∗ is an element of the basis S∗f
}

since we have ⊔
ξ∗∈S∗

(0,∞)ξ∗ =
⊔
ξ∈S

(0,∞)ξ =
⊔

ξ∗∈S∗
f

(0,∞)ξ∗

by Proposition 3.5.39. We have S∗ = S∗f .

Definition 3.5.11
Suppose that S is a basis of a reduced real root system ∆. The subgroup of the
Weyl group W (∆) generated by the set{

σξ : ξ is an element of the basis S
}

is denoted by W (S).

Lemma 3.5.1
Suppose that S is a basis of a reduced real root system ∆ and let f be a linear
functional on the real vector space span ∆. There exists an element σ of the
subgroup W (S) such that we have

(f ◦ σ)(ξ) ≥ 0

for any element ξ of the basis S.

Proof. There exists an element σ of the subgroup W (S) such that we have

(f ◦ σ)
(∑

∆+
)
≥ (f ◦ τ)

(∑
∆+
)

for any element τ of the subgroup W (S). We have

(f ◦ σ)(ξ) ≥ 0

for any element ξ of the basis S since we have

(f ◦ σ)
(∑

∆+
)
≥ (f ◦ σ ◦ σξ)

(∑
∆+
)

= (f ◦ σ)
(∑

∆+
)
− 2(f ◦ σ)(ξ)

by Proposition 3.5.36.
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Corollary 3.5.3
Suppose that S is a basis of a reduced real root system ∆ and let f be a linear
functional on the real vector space span ∆. There exists an element σ of the
Weyl group W (∆) such that we have

(f ◦ σ)(ξ) ≥ 0

for any element ξ of the basis S.

Lemma 3.5.2
Suppose that S is a basis of a reduced real root system ∆. We have{

bases of the reduced real root system ∆
}

=
{
σ(S) : σ is an element of the subgroup W (S)

}
.

Proof. Suppose that f is a linear functional on the real vector space span ∆
such that the set f(∆) does not contain the element 0. There exists an element
σ of the subgroup W (S) such that we have

(f ◦ σ)(ξ) > 0

for any element ξ of the basis S. We have Sf = σ(S).

Corollary 3.5.4
The Weyl group of a reduced real root system acts on the set of bases of the
reduced real root system transitively.

Lemma 3.5.3
Suppose that S is a basis of a reduced real root system ∆. We have

∆ = W (S)S.

Proof. Suppose that ξ is an element of the reduced real root system ∆ and let η
be an element of the set ∆\

{
±ξ
}

. The subspace ker ξ∩ker η is a proper subset
of the subspace ker ξ. There exists a linear functional f0 on the real vector space
span ∆ such that we have

0 = f0(ξ) <
∣∣f0(η)

∣∣
for any element η of the set ∆ \

{
±ξ
}

. There exists a linear functional f on the
real vector space span ∆ such that we have

0 < f(ξ) <
∣∣f(η)

∣∣
for any element η of the set ∆ \

{
±ξ
}

. The element ξ belongs to the basis
Sf and there exists an element σ of the subgroup W (S) such that we have
Sf = σ(S).
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Corollary 3.5.5
Suppose that S is a basis of a reduced real root system ∆. We have

∆ = W (∆)S.

Theorem 3.5.9
Suppose that S is a basis of a reduced real root system ∆. We have

W (∆) = W (S).

3.6 Semisimple Lie Algebras

Suppose that g is a finite dimensional semisimple Lie algebra over an alge-
braically closed field F of characteristic 0 and let ∆ denote the root system. We
have the Cartan decomposition

g = g0 ⊕
⊕
µ∈∆

gµ.

Proposition 3.6.1
Suppose that µ is an element of the space g∗0 . The linear mapping

gµ → g∗−µ, x 7→
[
y 7→ B(x, y)

]
is an isomorphism and we have dim gµ = dim g−µ.

Proof. It is sufficient to show that the linear mapping is a monomorphism since
the dual mapping of the linear mapping is precisely

g−µ → g∗µ, y 7→
[
x 7→ B(x, y)

]
.

Suppose that x is an element of the space gµ such that we have B(x, y) = 0 for
any element y of the space g−µ. We have x ⊥ g by Proposition 3.3.22. We have
x = 0 since the Killing form is nondegenerate.

Corollary 3.6.1
We have ∆ = −∆.

Proposition 3.6.2
Suppose that x and y are elements of the Cartan subalgebra. We have

B(x, y) =
∑
µ∈∆

µ(x)µ(y).

Proposition 3.6.3
We have g∗0 = span ∆.

Proof. We have ⋂
µ∈∆

kerµ = {0}.
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Definition 3.6.1
We define an isomorphism

g0 →, g∗0 , x 7→ t−1(x) =
[
y 7→ B(x, y)

]
and a symmetric form

(µ, ν) 7→ B∗(µ, ν) = B
(
t(µ), t(ν)

)
on the space g∗0 .

Proposition 3.6.4
Suppose that µ is an element of the space g∗0 and let (x, y) be an element of the
space gµ × g−µ. We have

[x, y] = B(x, y)t(µ).

Proposition 3.6.5
Suppose that µ is an element of the root system ∆. There exists an element
(x, y) of the space gµ × g−µ such that we have

B(x, y) = 1, [x, y] = t(µ).

Proposition 3.6.6
Suppose that µ is an element of the space g∗0 and let (x, y) be an element of the
space gµ × g−µ such that we have B(x, y) 6= 0. Suppose that h is an invariant
subspace for the derivations adx and ad y. We have

tr
(
adh t(µ)

)
= 0.

Proof. We may assume that the element µ is contained in the root system ∆.
We have

[adx, ad y] = B(x, y) ad t(µ).

We have

0 = tr[adh x, adh y] = B(x, y) tr
(
adh t(µ)

)
.

Proposition 3.6.7
Suppose that µ is a root and let h be a subspace of the Lie algebra g such that
the sets [gµ, h] and [g−µ, h] are contained in the space h. We have

tr
(
adh t(µ)

)
= 0.

Proof. We may assume that we have µ 6= 0. There exists an element (x, y) of
the space gµ × g−µ such that we have B(x, y) 6= 0. We have

tr
(
adh t(µ)

)
= 0

since the space h is invariant for the derivations adx and ad y.
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Theorem 3.6.1
Suppose that µ and ν are elements of the root system ∆. We have

B∗(µ, ν) = −
∑∞
n=−∞ ndim gµ+nν∑∞
n=−∞ dim gµ+nν

B∗(ν, ν).

Proof. We define

h =

∞⊕
n=−∞

gµ+nν .

We have

0 = tr
(
adh t(ν)

)
=

∞∑
n=−∞

(dim gµ+nν)B∗(µ+ nν, ν)

= (

∞∑
n=−∞

dim gµ+nν)B∗(µ, ν) + (

∞∑
n=−∞

ndim gµ+nν)B∗(ν, ν)

since the sets [gν , h] and [g−ν , h] are contained in the space h. We have

B∗(µ, ν) = −
∑∞
n=−∞ n dim gµ+nν∑∞
n=−∞ dim gµ+nν

B∗(ν, ν)

since we have
∞∑

n=−∞
dim gµ+nν ≥ dim gµ > 0.

Definition 3.6.2
Suppose that µ and ν are elements of the root system ∆. We define

qµν = −
∑∞
n=−∞ ndim gµ+nν∑∞
n=−∞ dim gµ+nν

.

We have
B∗(µ, ν) = qµνB

∗(ν, ν).

Theorem 3.6.2
Suppose that µ is an element of the root system ∆. The element

B∗(µ, µ) =
1∑

ν∈∆ q2
νµ

is a positive rational number.

Proof. Suppose that we have B∗(µ, µ) = 0. We have B∗(µ, ν) = 0 for any
element ν of the root system ∆. We have µ = 0 since we have g∗0 = span ∆
and the symmetric form B∗ is nondegenerate. This is a contradiction. We have
B∗(µ, µ) 6= 0. We have

B∗(µ, µ) =
1∑

ν∈∆(dim gν)q2
νµ
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since we have

B∗(µ, µ) = B
(
t(µ), t(µ)

)
=
∑
ν∈∆

(dim gν)ν
(
t(µ)

)2
=
∑
ν∈∆

(dim gν)B∗(µ, ν)2

=
∑
ν∈∆

(dim gν)q2
νµB

∗(µ, µ)2.

Theorem 3.6.3
Suppose that µ is an element of the root system ∆.

1. We have dim gµ = 1.

2. We have Zµ ∩∆ = {±µ}.

Proof. There exists an element (x, y) of the space gµ × g−µ such that we have
B(x, y) 6= 0. We define

h = Fy ⊕ Ft(µ)⊕
∞⊕
n=1

gnµ.

The space h is invariant for the derivations adx and ad y since we have

(ad y)
(
t(µ)

)
= −

(
ad t(µ)

)
(y)

= µ
(
t(µ)

)
y = B∗(µ, µ)y.

We have

0 = tr
(
adh t(µ)

)
= B∗(µ, µ)(−1 +

∞∑
n=1

ndim gnµ).

We have dim gµ = 1 and we have dim gnµ = 0 for any n > 1.

Theorem 3.6.4
Suppose that (µ, ν) is an element of the set (∆ ∪ {0})×∆ and let

n− = max{n ∈ Z+ : µ− nν is a root },
n+ = max{n ∈ Z+ : µ+ nν is a root }.

The set {µ+ nν}n+

n=−n−
is contained in the set ∆ ∪ {0} and we have

n− − n+ =
2B∗(µ, ν)

B∗(ν, ν)
.

Proof. We define

n− = min{n ∈ N : µ− nν is not a root } − 1 ≥ 0,

n+ = min{n ∈ N : µ+ nν is not a root } − 1 ≥ 0.
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We define

h =

n+⊕
n=−n−

gµ+nν .

We have

0 = tr
(
adh t(ν)

)
=

n+∑
n=−n−

(µ+ nν)
(
t(ν)

)
= (n+ + n− + 1)

(
B∗(µ, ν) +

(n+ − n−)

2
B∗(ν, ν)

)
.

since the sets [gν , h] and [g−ν , h] are contained in the space h. We have

n− − n+ =
2B∗(µ, ν)

B∗(ν, ν)
.

Suppose that there exists an integer −n− < n < n+ such that the element
µ+ nν is not contained in the set ∆ ∪ {0}. We have

0 ≤
2B∗

(
µ+ (n− 1)ν, ν

)
B∗(ν, ν)

=
2B∗(µ, ν)

B∗(ν, ν)
+ 2(n− 1)

<
2B∗

(
µ+ (n+ 1)ν, ν

)
B∗(ν, ν)

=
2B∗(µ, ν)

B∗(ν, ν)
+ 2(n+ 1) ≤ 0.

This is a contradiction.

Definition 3.6.3
Suppose that (µ, ν) is an element of the set (∆ ∪ {0})×∆. We define

cµν =
2B∗(µ, ν)

B∗(ν, ν)
.

Remark 3.6.1
The element µ− cµνν is contained in the set ∆ ∪ {0}.

Proof. We have −n− ≤ −cµν = n+ − n− ≤ n+.

Proposition 3.6.8
3 Suppose that µ is an element of the root system ∆. We have

µ∗ =
2t(µ)

B∗(µ, µ)
.

Theorem 3.6.5
The root system of a finite dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0 is reduced.

3Proposition 3.5.9.
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Theorem 3.6.6
Suppose that µ is an element of the root system ∆. The subspace

gµ ⊕ g−µ ⊕ Fµ∗

is a Lie subalgebra isomorphic to the Lie algebra M(2,F) ∩ ker tr.

Proof. There exists an element (x, y) of the space gµ × g−µ such that we have
[x, y] = µ∗. We have [µ∗, x] = 2x and we have [µ∗, y] = −2y.

Theorem 3.6.7
Suppose that µ and ν are elements of the root system ∆ such that the element
µ+ ν is contained in the root system ∆ and let

n− = max{n ∈ Z+ : µ− nν is a root },
n+ = max{n ∈ Z+ : µ+ nν is a root }.

The adjoint representation of the Lie algebra

M(2,F) ∩ ker tr = gν ⊕ g−ν ⊕ Fν∗

on the vector space
n+⊕

n=−n−

gµ+nν

is irreducible.

Proof. The representation is completely reducible by Weyl’s theorem. The set
{µ+ nν}n+

n=−n−
is contained in the root system ∆ and we have

(µ+ n+ν)(ν∗) = n+ + n−.

Corollary 3.6.2
Suppose that µ and ν are elements of the root system ∆ such that the element
µ+ ν is contained in the root system ∆. We have [gµ, gν ] = gµ+ν .

Proposition 3.6.9
The set ∆(spanQ ∆∗) is contained in the field Q.

Proposition 3.6.10
We have rank g = dim spanQ ∆ = dimQ spanQ ∆∗.

Proposition 3.6.11
We have g∗0 = spanQ ∆⊗ F.

Proof. There exists a canonical epimorphism of the space spanQ ∆⊗F onto the
space g∗0 . We have dim g∗0 = dim(spanQ ∆⊗ F) = rank g .

Proposition 3.6.12
We have (spanQ ∆)∗ = spanQ ∆∗.
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Proposition 3.6.13
The Killing form induces the inner product on the real vector space (spanQ ∆⊗
R)∗ = spanQ ∆∗ ⊗ R.

Proof. Suppose that S is a basis of the space g∗0 that is contained in the root
system ∆. The symmetric matrix(

B(µ∗, ν∗) =
4B∗(µ, ν)

B∗(µ, µ)B∗(ν, ν)

)
µ,ν∈S

belongs to the group M(rank g ,Q)× and we have

B(x, x) =
∑
µ∈∆

µ(x)2 ≥ 0

for any element x of the space spanQ ∆∗. The space spanQ ∆∗ is a dense subspace
of the space spanQ ∆∗⊗R by Proposition 2.2.11. Suppose that x is an arbitrary
element of the space spanQ ∆∗⊗R. There exists a sequence (xn)∞n=1 of the space
spanQ ∆∗ such that we have x = limn→∞ xn. We have

B(x, x) = lim
n→∞

B(xn, xn)

= lim
n→∞

∑
µ∈∆

µ(xn)2 =
∑
µ∈∆

µ(x)2 ≥ 0.

The nonnegative symmetric form on the real vector space spanQ ∆∗ ⊗ R is an
inner product since it is nondegenerate.

Suppose that ∆+ \ (∆+ + ∆+) is a basis of the reduced real root system ∆
and let

g+ =
⊕
µ∈∆+

gµ, g− =
⊕
µ∈∆+

g−µ.

Proposition 3.6.14
Any element of the Lie subalgebras g± is nilpotent.

Corollary 3.6.3
The Lie algebras g± are nilpotent.

Corollary 3.6.4
The Lie algebras g0 ⊕ g± are solvable and we have D(g0 ⊕ g±) = g±.

Suppose that we have ∆+ \ (∆+ + ∆+) = {µk}rank g
k=1 and let (xk, yk) be an

element of the space gµk × g−µk such that we have [xk, yk] = µ∗k for any k.

Theorem 3.6.8
We have the following.

1. The Lie algebra g+ is generated by the set {xk}rank g
k=1 .
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2. The Lie algebra g− is generated by the set {yk}rank g
k=1 .

3. The Lie algebra g is generated by the set {xk}rank g
k=1 ∪ {yk}rank g

k=1 .

Theorem 3.6.9
We have the following.

1. We have [µ∗i , µ
∗
j ] = 0.

2. We have [xi, yj ] = δijµ
∗
j .

3. We have [µ∗i , xj ] = Cµjµixj .

4. We have [µ∗i , yj ] = −Cµjµiyj .

5. We have
(adxi)

−Cµjµi+1(xj) = (ad yi)
−Cµjµi+1(yj) = 0

provided that the elements µi and µj are distinct.

Proof. 1. The Cartan subalgebra is abelian.

2. Suppose that the elements µi and µj are distinct. The elements [xi, yj ]
belongs to the space gµi−µj = {0}.

3. We have [µ∗i , xj ] = µj(µ
∗
i )xj = Cµjµixj .

4. We have [µ∗i , yj ] = −µj(µ∗i )yj = −Cµjµiyj .

5. We have
−Cµjµi = max{n ∈ Z+ : µj + nµi is a root }.

The element (adxi)
−Cµjµi+1(xj) belongs to the space

gµj+(−Cµjµi+1)µi = {0}.

Remark 3.6.2
We have (

1√
2

(
1 1

−
√
−1

√
−1

))−1

=
1√
2

(
1
√
−1

1 −
√
−1

)
.

Example 3.6.1
Suppose that m is a positive integer.

0 0 0
0 0 diag(x1, . . . , xm)
0 −diag(x1, . . . , xm) 0

 : x1, . . . , xm ∈ F


is a Cartan subalgebra of the semisimple Lie algebra{

x ∈M(2m+ 1,F) : xT = −x
}
.
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We have(
1⊕ 1√

2

(
1
√
−1

1 −
√
−1

))
{
x ∈M(2m+ 1,F) : xT = −x

}(
1⊕ 1√

2

(
1 1

−
√
−1

√
−1

))

=


 0 x12 x13

−xT13 x22 x23

−xT12 x32 −xT22

 : x23 + xT23 = x32 + xT32 = 0

 .

We have

1√
2

(
1
√
−1

1 −
√
−1

)(
0

√
−1 diag(x1, . . . , xm)

−
√
−1 diag(x1, . . . , xm) 0

)
1√
2

(
1 1

−
√
−1

√
−1

)
=

(
diag(x1, . . . , xm) 0

0 −diag(x1, . . . , xm)

)
.
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Chapter 4

Universal Enveloping
Algebras

4.1 Poincaré-Birkhoff-Witt Theorem

Suppose that g is a Lie algebra over a field F and let X be its basis. By the
well-ordering theorem there exists a total order on the set X. We write π
for the canonical homomorphism of the tensor algebra T (g) onto the universal
enveloping algebra U(g). We define

Un(g) = π
( n⊕
k=0

T k(g)
)

for any nonnegative integer n. We have limn→∞ Un(g) = U(g).

Remark 4.1.1
Suppose that n is a nonnegative integer and let f be a linear mapping of the
vector space

⊕n
k=0 T

k(g) into any vector space such that we have

f(x1 · · ·xm) = f(x1 · · ·xkxk−1 · · ·xm) + f
(
x1 · · · [xk−1, xk] · · ·xm

)
for any element x of the set{

x ∈ Xm : xk < xk−1

}
for any integers m and k. We have

f
(
x1 · · ·

(
xk−1xk − xkxk−1 − [xk−1, xk]

)
· · ·xm

)
= 0

for any element x of the set gm for any integers m and k.

Proposition 4.1.1
The universal enveloping algebra U(g) is linearly generated by the set

∞⋃
n=0

{
π(x1) · · ·π(xn) : x1 ≤ · · · ≤ xn ∈ X

}
.

137
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Proof. It is sufficient to show that the subspace Un(g) is linearly generated by
the set

n⋃
m=0

{
π(x1) · · ·π(xm) : x1 ≤ · · · ≤ xm ∈ X

}
(4.1)

for any nonnegative integer n. The proof is by induction on the nonnegative
integer n. Suppose that we have n > 0. It is sufficient to show that the element
π(x1) · · ·π(xn) is contained in the subspace generated by the set (4.1) for any
element x of the set Xn. The proof is by induction on the nonnegative integer

r(x) = #
{

(i, j) : i < j and xj < xi
}
.

Suppose that we have r(x) > 0. We have xk < xk−1 for some integer k. The
element

π(x1) · · ·π(xn) = π(x1) · · ·π(xk)π(xk−1) · · ·π(xn)

+ π(x1) · · ·π
(
[xk−1, xk]

)
· · ·π(xn)

is contained in the subspace generated by the set (4.1) by the induction hypoth-
esis since we have r(x1, . . . , xk, xk−1, . . . , xn) = r(x)− 1 and the element

π(x1) · · ·π
(
[xk−1, xk]

)
· · ·π(xn)

belongs to the subspace Un−1(g).

Proposition 4.1.2
There exists a unique linear mapping f of the tensor algebra T (g) onto the
symmetric algebra S(g) satisfying the following.

1. We have
f(x1 · · ·xn) = x1 · · ·xn

for any element x of the set{
x ∈ Xn : x1 ≤ · · · ≤ xn

}
for any nonnegative integer n.

2. We have

f(x1 · · ·xn) = f(x1 · · ·xkxk−1 · · ·xn) + f
(
x1 · · · [xk−1, xk] · · ·xn

)
for any element x of the set{

x ∈ Xn : xk < xk−1

}
for any integers n and k.

Proof. It is sufficient to show the following proposition.



4.1. POINCARÉ-BIRKHOFF-WITT THEOREM 139

Proposition 4.1.3
Suppose that f is a linear mapping of the subspace

n−1⊕
k=0

T k(g)⊕ span
{
x1 · · ·xn : x is an element of the set Xn

such that we have r(x) < r
}

into any vector space such that we have

f(x1 · · ·xm) = f(x1 · · ·xkxk−1 · · ·xm) + f
(
x1 · · · [xk−1, xk] · · ·xm

)
for any element x of the set{

x ∈ Xm : xk < xk−1

}
for any integers m and k. We have

f(x1 · · ·xk1xk1−1 · · ·xn) + f
(
x1 · · · [xk1−1, xk1 ] · · ·xn

)
= f(x1 · · ·xk2xk2−1 · · ·xn) + f

(
x1 · · · [xk2−1, xk2 ] · · ·xn

)
for any element x of the set{

x ∈ Xn : xk1 < xk1−1 and xk2 < xk2−1

}
∩ r−1(r)

for any integers k1 and k2.

Proof. Suppose that we have k = k1 = k2 − 1. We have

f
(
· · ·
(
xkxk−1 + [xk−1, xk]

)
· · ·
)
− f

(
· · ·xk+1xkxk−1 · · ·

)
= f

(
· · ·
(
[xk, xk+1]xk−1 + xk[xk−1, xk+1] + [xk−1, xk]xk+1

)
· · ·
)

and we have

f
(
· · ·
(
xk+1xk + [xk, xk+1]

)
· · ·
)
− f

(
· · ·xk+1xkxk−1 · · ·

)
= f

(
· · ·
(
xk+1[xk−1, xk] + [xk−1, xk+1]xk + xk−1[xk, xk+1]

)
· · ·
)
.

We have

f
(
· · ·
(
xkxk−1 + [xk−1, xk]

)
· · ·
)
− f

(
· · ·
(
xk+1xk + [xk, xk+1]

)
· · ·
)

= f
(
· · ·
([

[xk, xk+1], xk−1

]
+
[
xk, [xk−1, xk+1]

]
+
[
[xk−1, xk], xk+1

])
· · ·
)
.

Suppose that we have k1 < k2 − 1. We have

f
(
· · ·
(
xk1xk1−1 + [xk1−1, xk1 ]

)
· · ·
)

= f
(
· · ·
(
xk2xk2−1 + [xk2−1, xk2 ]

)
· · ·
)

= f
(
· · ·
(
xk1xk1−1 + [xk1−1, xk1 ]

)
· · ·
(
xk2xk2−1 + [xk2−1, xk2 ]

)
· · ·
)
.



140 CHAPTER 4. UNIVERSAL ENVELOPING ALGEBRAS

Corollary 4.1.1
There exists a unique linear mapping f of the universal enveloping algebra U(g)
onto the symmetric algebra S(g) such that we have

f
(
π(x1) · · ·π(xn)

)
= x1 · · ·xn

for any element x of the set{
x ∈ Xn : x1 ≤ · · · ≤ xn

}
for any nonnegative integer n.

Theorem 4.1.1 (Poincaré-Birkhoff-Witt)
We have the following.

1. The canonical homomorphism of the Lie algebra g into the universal en-
veloping algebra U(g) is an imbedding.

2. The linear mapping f of the symmetric algebra S(g) onto the universal
enveloping algebra U(g) defined by

f(x1 · · ·xn) = x1 · · ·xn

for any nonnegative integer n and for any element x of the set{
x ∈ Xn : x1 ≤ · · · ≤ xn

}
is a linear isomorphism.

Proof. The linear mapping f of the symmetric algebra S(g) onto the universal
enveloping algebra U(g) defined by

f(x1 · · ·xn) = π(x1) · · ·π(xn)

for any nonnegative integer n and for any element x of the set{
x ∈ Xn : x1 ≤ · · · ≤ xn

}
is an imbedding by the previous proposition.

Proposition 4.1.4
The universal enveloping algebra of a Lie subalgebra is a subalgebra with iden-
tity of the universal enveloping algebra of the Lie algebra.

Definition 4.1.1
We define U−1(g) = {0} and we define

grn U(g) =
Un(g)

Un−1(g)

for any nonnegative integer n.
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Proposition 4.1.5
We have

gr0 U(g) = U0(g) = F, gr1 U(g) =
U1(g)

U0(g)
=

F⊕ g

F
= g .

Proposition 4.1.6
The mapping

grm U(g)× grn U(g)→ grm+n U(g),(
x+ Um−1(g), y + Un−1(g)

)
7→ xy + Um+n−1(g)

is bilinear for any nonnegative integers m and n and the direct sum

grU(g) =

∞⊕
n=0

grn U(g)

is a graded commutative algebra with identity.

Theorem 4.1.2
We have S(g) = grU(g).

Suppose that g1 and g2 are Lie algebras over a field.

Proposition 4.1.7
A linear mapping f of the algebra U(g1) into the algebra U(g2) such that the
space f

(
Un(g1)

)
is contained in the space Un(g2) for any nonnegative integer n

induces a linear mapping gr f of the algebra S(g1) = grU(g1) into the algebra
S(g2) = grU(g2) such that we have

gr f
(
xn + Un−1(g1)

)
= f(xn) + Un−1(g2)

for any element xn of the space Un(g1) for any nonnegative integer n.

1. We have gr f(1) = 1 provided that we have f(1) = 1.

2. The mapping gr f is a homomorphism of graded algebras provided that
the mapping f is a homomorphism of algebras.

Proof. Suppose that the linear mapping f is a homomorphism of algebras. We
have

gr f(xy) =

∞∑
n=0

n∑
k=0

f(xk)g(yn−k) + Un−1(g2) = gr f(x) gr f(y)

for any elements x and y of the algebra grU(g1).

Theorem 4.1.3
We have U(g1 ⊕ g2) = U(g1)⊗ U(g2).
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Suppose that V1 and V2 are vector spaces over a field.

Corollary 4.1.2
We have S(V1 ⊕ V2) = S(V1)⊗ S(V2).

Proof. Any vector space is an abelian Lie algebra.

Proposition 4.1.8
The inclusion mapping of the algebra U(g1) into the algebra U(g1) ⊗ U(g2)
induces the inclusion mapping of the algebra S(g1) = grU(g1) into the algebra
S(g1)⊗ S(g2) = gr

(
U(g1)⊗ U(g2)

)
.

Proposition 4.1.9
We have

x⊗ 1 + Un−1(g1 ⊕ g2) =
(
x+ Un−1(g1)

)
⊗ 1

for any element x of the space Un(g1) for any nonnegative integer n.

Proof. We write f for the inclusion mapping of the algebra U(g1) into the alge-
bra U(g1)⊗ U(g2). We have

x⊗ 1 + Un−1(g1 ⊕ g2) = gr f
(
x+ Un−1(g1)

)
=
(
x+ Un−1(g1)

)
⊗ 1.

Proposition 4.1.10
The diagonal mapping ∆ is the unique homomorphism of algebras with identity
of the algebra U(g) into the algebra U(g)⊗ U(g) such that we have

∆(x) = x⊗ 1 + 1⊗ x

for any element x of the Lie algebra g .

Proposition 4.1.11
The induced mapping gr ∆ is a homomorphism of graded algebras with identity
of the algebra S(g) into the algebra S(g)⊗ S(g) such that we have

gr ∆(x) = x⊗ 1 + 1⊗ x

for any element x of the Lie algebra g .

Definition 4.1.2
An element x of the universal enveloping algebra U(g) is said to be primitive if
we have ∆(x) = x⊗ 1 + 1⊗ x.

Theorem 4.1.4
Suppose that the field F is of characteristic 0. Any primitive element of the
universal enveloping algebra U(g) belongs to the Lie algebra g .

Proof. Suppose that the Lie algebra g is abelian and let x be its basis. We have

U(g) = F[x], U(g)⊗ U(g) = U(g ⊕ g) = F[x1,x2].



4.2. FREE LIE ALGEBRAS 143

We have
∆f(x) = f(x1 + x2)

for any element f(x) of the universal enveloping algebra U(g) = F[x] since we
have

∆(x) = x⊗ 1 + 1⊗ x = x1 + x2

for any element x of the basis x. Suppose that f(x) is a primitive element of
the universal enveloping algebra U(g) = F[x]. We have

∞∑
n=0

2nfn(x) = f(2x) = 2f(x) =

∞∑
n=0

2fn(x)

since we have

f(x1 + x2) = ∆f(x) = f(x)⊗ 1 + 1⊗ f(x) = f(x1) + f(x2).

The element f(x) = f1(x) belongs to the Lie algebra g .
Suppose that the Lie algebra g is arbitrary and let x be a primitive element

of the universal enveloping algebra U(g). We define

n = min
{
n ∈ N : x ∈ Un(g)

}
.

The element x+ Un−1(g) belongs to the space gr1 U(g) = g since we have

gr ∆
(
x+ Un−1(g)

)
= x⊗ 1 + 1⊗ x+ Un−1(g ⊕ g)

=
(
x⊗ 1 + Un−1(g ⊕ g)

)
+
(
1⊗ x+ Un−1(g ⊕ g)

)
=
(
x+ Un−1(g)

)
⊗ 1 + 1⊗

(
x+ Un−1(g)

)
by Proposition 4.1.9. We have n = 1 since the element x+Un−1(g) is primitive.
There exists a scalar ν such that the element x − ν belongs to the Lie algabra
g . We have ν = x⊗ 1 + 1⊗ x−∆(x) = 0.

4.2 Free Lie Algebras

In this section algebras are not necessarily associative.

Definition 4.2.1
A set with a binary operation is called a magma.

Proposition 4.2.1
A set is a subset of the free magma on the set.

Suppose that X is a set. We write MX for the free magma on the set X.

Theorem 4.2.1
Suppose that f is a mapping of the set X into a magma M . There exists a
unique homomorphism of the magma MX into the magma M extending the
mapping f .
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Suppose that F is a field.

Proposition 4.2.2
There exists a unique bilinear binary operation on the vector space F⊕MX ex-
tending the binary operation on the magma MX .

Proposition 4.2.3
The vector space F⊕MX is an algebra over the field F.

Proposition 4.2.4
The magma MX is a submagma of the algebra F⊕MX .

Proposition 4.2.5
The algebra F⊕MX =

⊕∞
n=1 F⊕Xn is graded.

Theorem 4.2.2
Suppose that f is a mapping of the set X into an algebra A. There exists a
unique homomorphism of the algebra F⊕MX into the algebra A extending the
mapping f .

We write LX for the free Lie algebra on the set X.

Theorem 4.2.3
We have U(LX) = F〈X〉 = T (F⊕X).

Proposition 4.2.6
The Lie algebra LX is generated by the set X.

Theorem 4.2.4
Suppose that f is a mapping of the set X into a Lie algebra L. There exists a
unique homomorphism of the Lie algebra LX into the Lie algebra L extending
the mapping f .

Definition 4.2.2
We define

LnX = LX ∩ F〈X〉n, F〈X〉n = span
{
x1 · · ·xn : x1, . . . , xn ∈ X

}
for any nonnegative integer n.

Proposition 4.2.7
The Lie algebra LX =

⊕∞
n=1 L

n
X is graded.

Proposition 4.2.8
We have

LnX = span
{

(adx1) · · · (adxn−1)(xn) : (xk)nk=1 ∈ Xn
}

for any positive integer n.

Proposition 4.2.9
We have the following.
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1. The kernel of the canonical homomorphism of the graded algebra F⊕MX

onto the graded Lie algebra LX is the ideal generated by the following
elements.

[x, x], x ∈ F⊕MX

[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2], x1, x2, x3 ∈ F⊕MX

2. The kernel of the canonical homomorphism of the graded algebra F⊕MX

onto the graded Lie algebra LX is the ideal generated by the following
homogeneous elements.

[x, x], x ∈MX

[x1, x2] + [x2, x1], x1 6= x2 ∈MX

[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2], x1, x2, x3 ∈MX

Proposition 4.2.10
The associative algebra F〈X〉 =

⊕∞
n=0 F〈X〉n is graded and its completion

F〈X〉 =
∏∞
n=0 F〈X〉n is an associative algebra.

Proposition 4.2.11
The completion LX =

∏∞
n=1 L

n
X is a Lie subalgebra of the ideal

∏∞
n=1 F〈X〉n.

Proof. We have

[f, g] =

∞∑
n=2

n−1∑
k=1

[fk, gn−k]

=

∞∑
n=2

n−1∑
k=1

(fkgn−k − gn−kfk) = fg − gf

for any elements f and g of the completion LX .

Proposition 4.2.12
We have the following.

1. The diagonal mapping of the universal enveloping algebra F〈X〉 into the
universal enveloping algebra F〈X〉 ⊗ F〈X〉 is graded.

2. The diagonal mapping extends to the homomorphism of algebras with
identity

f =

∞∑
n=0

fn 7→ ∆(f) =

∞∑
n=0

∆(fn)

of the completion F〈X〉 into the completion F〈X〉 ⊗ F〈X〉.
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