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Statement

The main theorem of my talk is the following:

Theorem (I. and Sharygin, 2024)

Assumptions:

x and y : central elements of the universal enveloping
algebra Ugld .

ξ: d × d numerical matrix.

Then
[
∂mξ x , ∂

n
ξ y
]

= 0 for any m and n.

Here,

∂ξ = tr(ξ∂) and ∂ ij ∈ homUgld : the quantum derivation
introduced by Gurevich, Pyatov, and Saponov.
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Symmetric and Universal Enveloping Algebras

Roughly speaking, the symmetric algebra gives classical
descriptions and the universal enveloping algebra gives
quantum descriptions of a Lie algebra.

Suppose that (e1, . . . , ed) is a basis of a finite dimensional
complex Lie algebra g and let

Tg ' C〈e1, . . . , ed〉

denote its tensor algebra.
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Symmetric Algebra

The symmetric algebra Sg is a quotient algebra of the tensor
algebra Tg by the ideal generated by{

x ⊗ y − y ⊗ x : x , y ∈ g
}
.

That is,

Sg = Tg/
(
x ⊗ y − y ⊗ x : x , y ∈ g

)
' C[e1, . . . , ed ].

The symmetric algebra Sg is a commutative algebra.
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Universal Enveloping Algebra

The universal enveloping algebra Ug is a quotient algebra of
the tensor algebra Tg by the ideal generated by{

x ⊗ y − y ⊗ x − [x , y ] : x , y ∈ g
}
.

That is,

Ug = Tg/
(
x ⊗ y − y ⊗ x − [x , y ] : x , y ∈ g

)
.

The universal enveloping algebra Ug is a non-commutative
algebra (if the Lie bracket of g is non-trivial).
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Deformation Quantization

In mathematics, it is well-known that the dual space g∗ of the
Lie algebra g is a Poisson manifold: g ⊂ Sg ⊂ C∞g∗.

Lie algebra g = g∗∗: linear functions on g∗.

Symmetric algebra Sg: polynomial functions on g∗.

Smooth functions algebra C∞g∗: smooth functions on g∗.

Consider a deformation quantization of C∞g∗.

C∞g∗ × C∞g∗
?−−−−→ (C∞g∗)[[ν]]x x

Sg× Sg
?−−−−→ (Sg)[ν]
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Deformation Quantization

Remark

The image of the restriction of the appropriate star product on
Sg× Sg is contained in the polynomial algebra (Sg)[ν].

It makes sense to put ν = 1 and obtain the star product
on the symmetric algebra Sg.

The universal enveloping algebra Ug is isomorphic to the
symmetric algebra Sg with the star product at ν = 1.

We have Sg = grUg .
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Prior Research and Motivation

Take a basis (en)dn=1 of g and let

∂ξ =
d∑

n=1

ξ(en)
∂

∂en
∈ der Sg

be the directional derivative along ∀ξ ∈ g∗. Let C be the
Poisson center of Sg. The following theorem is referred to as
the argument shift method.

Theorem (A. Mishchenko and A. Fomenko, 1978)

The subset
{
∂
n
ξx : (n, x) ∈ N× C

}
is Poisson commutative.



Q-Shifts

Yasushi Ikeda

Statement

Motivation

Motivation

Derivation

Formula

Generators

Conclusions

Prior Research and Motivation

We obtaine a Poisson commutative subalgebra C ξ
generated by these elements ∂

n
ξx .

Recall grUg = Sg .

Vinberg asked if the argument shift algebra C ξ can be

quantised to a commutative subalgebra Cξ of the
universal enveloping algebra Ug in a way that

grCξ = C ξ .

Such Cξ is called a quantum argument shift algebra.
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Prior Research and Motivation

Vinberg’s problem has been resolved in two ways:

Twisted Yangians: Nazarov–Olshanski.
Symmetrisation mapping: Tarasov.

Also resolved using the Feigin–Frenkel center:

for regular elements ξ: Feigin et al. and Rybnikov.
for simple Lie algebras of types A and C: Futorny–Molev
and Molev–Yakimova.

Motivation

The purpose of my talk is to quantize not only the algebra C ξ
but also the operator ∂ξ.
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Quantum Derivation

Let e =

e11 . . . e1d
. . . . . . . . . . .
ed1 . . . edd

 be a matrix satisfying the following.

The set {
e ij : i , j = 1, . . . , d

}
is a basis of the general linear Lie algebra gl(d ,C).

We have the commutation relations[
e i1j1 , e

i2
j2

]
= δi1j2e

i2
j1
− δi2j1e

i1
j2
.



Q-Shifts

Yasushi Ikeda

Statement

Motivation

Motivation

Derivation

Formula

Generators

Conclusions

Quantum Derivation

We define

∂x =

∂
1
1x . . . ∂

1
dx

. . . . . . . . . . . . . .

∂
d
1x . . . ∂

d
dx

 , ∂
i
j =

∂

∂e ji

for any element x of the symmetric algebra Sgl(d ,C).
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Quantum Derivation

Remark

The derivation

Sgld → M(d ,Sgld), x 7→ ∂x

is a unique linear mapping satisfying the following.

1 ∂ν = 0 for any scalar ν.

2 ∂ tr(ξe) = ξ for any numerical matrix ξ.

3 (Leibniz rule)

∂(xy) = (∂x)y + x(∂y)

for any elements x and y of the symmetric algebra Sgld .
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Quantum Derivation

There is no such mapping on Ugld because it is
non-commutative.
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Quantum Derivation

Definition (Gurevich, Pyatov, and Saponov, 2012)

The quantum derivation

Ugld → M(d ,Ugld), x 7→ ∂x

is a unique linear mapping satisfying the following.

1 ∂ν = 0 for any scalar ν.

2 ∂ tr(ξe) = ξ for any numerical matrix ξ.

3 (quantum Leibniz rule)

∂(xy) = (∂x)y + x(∂y) + (∂x)(∂y)

for any elements x and y of the universal enveloping
algebra Ugld .
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Quantum Derivation

Let C be the center of the algebra Ugld . Suppose that ξ is a
numerical matrix and let ∂ξ = tr(ξ∂). The main theorem is the
following:

Theorem (I. and Sharygin, 2024)

The subset {
∂nξ x : (n, x) ∈ N× C

}
(1)

is commutative.

Corollary

The subalgebra Cξ generated by the subset (1) is the quantum
argument shift algebra in the direction ξ.
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Quantum Derivation

We may assume that ξ = diag(z1, . . . , zd) is diagonal and
(z1, . . . , zd) is distinct considering the adjoint action of the
general linear Lie group GLd .

Vinberg and Rybnikov showed that the quantum argument
shift algebra in the direction ξ is the centralizer of the set{

e ii ,
∑
j 6=i

e ji e
i
j

zi − zj

}d

i=1

. (2)

Since, by definition, the quantum argument shift algebra is
commutative, the proof is carried out by showing that the
quantum argument shift ∂nξ x commutes with the elements
(2) by induction on the natural number n.
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Formula

The center C of the algebra Ugld is the free commutative
algebra on the elements

tr e, . . . , tr ed .

They are called the Gelfand invariants. We would like to
calculate the quantum argument shift ∂nξ x for a central element
x . It is necessary and even sufficient to calculate the quantum
derivation ∂(en)ij .
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Formula

Remark

The linear operator

Ugl(d ,C)→ M
(
d ,Ugl(d ,C)

)
, x 7→ diag(x , . . . , x) + ∂x

is an algebraic homomorphism and will be denoted by ∂ from
now on. We have the quantum Leibniz rule

∂(xy) = (∂x)(∂y)

for any elements x and y of the universal enveloping algebra
Ugl(d ,C).



Q-Shifts

Yasushi Ikeda

Statement

Motivation

Motivation

Derivation

Formula

Generators

Conclusions

Formula

I obtained the following formula for the quantum derivation.

We define f
(n)
± (x) =

n∑
m=0

1± (−1)n−m

2

(
n − 1

m

)
xm.

Theorem (I, 2022)

We have

∂(en)ij =
n∑

m=0

(
f
(n−m)
+ (e)(em)ij + f

(n−m)
− (e)j(e

m)i
)

=
n∑

m=0

(
(em)ij f

(n−m)
+ (e) + (em)j f

(n−m)
− (e)i

)
.

The formula is used for the base case.



Q-Shifts

Yasushi Ikeda

Statement

Motivation

Motivation

Derivation

Formula

Generators

Conclusions

Formula

We assume the following form

∂(en)ij =
n∑

m=0

(
g
(n)
m (e)(em)ij + h

(n)
m (e)j(e

m)i
)
,

where g
(n)
m and h

(n)
m are polynomials. By the quantum Leibniz

rule and the commutation relations[
(em)i , ekj

]
= (em)kδij − δk(em)ij ,

We obtained the initial condition

g
(0)
0 (x) = 1, h

(0)
0 (x) = 0
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Formula

and the recursive relation

g
(n+1)
0 (x) =

n∑
m=0

h
(n)
m (x)xm,

g
(n+1)
m (x) = g

(n)
m−1(x), 0 < m ≤ n + 1,

h
(n+1)
m (x) = g

(n)
m (x) + h

(n)
m (x)x , 0 ≤ m < n + 1,

h
(n+1)
n+1 (x) = 0.

Its solution is

g
(n)
m (x) = f

(n−m)
+ (x), h

(n)
m (x) = f

(n−m)
− (x).
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Formula

The inductive step reduces to proving

[
ad e ii , ∂ξ

]
=
[[

ad
∑
j 6=i

e ji e
i
j

zi − zj
, ∂ξ

]
, ∂ξ

]
= 0.

It can be done by computation.
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Generators

Our theorem causes a filtration

C
(0)
ξ = C , C

(n)
ξ = C

(n−1)
ξ

[
∂nξC

]
of the quantum argument shift algebra Cξ. Using the formula
we obtain

C
(1)
ξ = C

(0)
ξ

[
tr
(
ξen
)

: n = 1, 2, . . .
]
,

C
(2)
ξ = C

(1)
ξ

[
τξ

(
0 P>n
Pm 0

)
: m, n = 0, 1, 2, . . .

]
.

Pn: some matrix composed of binomial coefficients.
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Generators

But as for the second line these generators are redundant:

C
(2)
ξ = C

(1)
ξ

[
τξ

(
0 P>n
Pm 0

)
: |m − n| ≤ 1

]
.

Lemma (I, 2025)

We have

σ

(
0 P>m

Pm+2n 0

)
=

n∑
k=0

((
2n − k

k

)
+

(
2n − k − 1

k − 1

))
P
(m+k)
m+k ,

σ

(
0 P>m

Pm+2n+1 0

)
=

n∑
k=0

(
2n − k

k

)(
P
(m+k)
m+k+1 + P

(m+k+1)
m+k

)
.

for any nonnegative integers m and n.
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Generators

Lemma reduces to the following relations.

1 For ε = 0, 1,(
x + y + n

2n + ε

)
+

(
x − y + n

2n + ε

)
=

n∑
m=0

(
x + m

2m + ε

)
((

y + n −m

2(n −m)

)
+

(
y − 1 + n −m

2(n −m)

))
.

2

n∑
m=0

(
x −m

m

)(
y + m

n −m

)
=

n∑
m=0

(
x + y −m

m

)(
m

n −m

)
.

3

(
x

n

)
=

n∑
m=0

(
x −m

m

)(
m

n −m

)

+
n−1∑
m=0

(
x − 1−m

m

)(
m

n − 1−m

)
.
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Generators

They are shown by induction.
The generators are tr

(
ξe
)
, tr
(
ξe2
)
, . . . and

tr
(
ξ2e
)
,

tr
(
2ξ2e2 + ξeξe

)
,

tr
(
ξ2e3 + ξeξe2

)
,

tr
(
2ξ2e4 + 2ξeξe3 + ξe2ξe2 + ξ2e2

)
,

tr
(
ξ2e5 + ξeξe4 + ξe2ξe3 + ξ2e3

)
,

tr
(
2ξ2e6 + 2ξeξe5 + 2ξe2ξe4 + ξe3ξe3 + 4ξ2e4 + ξeξe3

)
,

tr
(
ξ2e7 + ξeξe6 + ξe2ξe5 + ξe3ξe4 + 3ξ2e5 + ξeξe4

)
, . . . .

They are mutually commutative.
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Conclusions

We consider a representation of another Lie algebra and
obtain a quantum derivation/quantum argument shift
operator. However, this naive operator does not satisfy the
quantized argument shift method. This means that I still
do not know the appropriate definition of the quantum
derivation/quantum argument shift operator in the general
case.

It may be more promising to generalize this result to the
general linear Lie superalgebra glm|n. I am currently
working on this.

By encoding quantum information in the joint eigenspaces
of a family of matrices arising from representations of
these commuting elements, we may be able to develop a
new error-correction scheme.
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