Quantum M-F Construction

Yasushi Iked

Outline

Introduction

Formula

Conclusion

Reference

Quantum Derivation and Mishchenko-Fomenko Construction

Yasushi Ikeda

Moscow State University

September 28, 2023 ISND 2023

Outline

Quantum M-F Construction

Yasushi Iked

Outline

Introduction

Г----

C------ CF:E

Conclusion

1 Outline

2 Introduction

3 Quantum M-F Theorem

4 Foundamental Formula

5 Second Quantum Argument Shifts

6 Conclusion

Outline

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

Formula

Second Shif

Reference

I will explain and develop a quantum analogue of the theorem of A. Mishchenko and A. Fomenko.

- Main topics of our research:
 - Formula for Quantum Argument Shift:

$$\partial(e^n)_j^i = \sum_{m=0}^{n-1} \left(f_+^{(n-m-1)}(e)_j (e^m)^i + f_-^{(n-m-1)}(e) (e^m)_j^i \right)$$

2 Generators of Second Quantum Argument Shift:

$$C_{\xi}^{(2)} = C_{\xi}^{(1)} \Big[\tau_{\xi} \big(P_{n}^{(n)} \big), \tau_{\xi} \big(P_{n+1}^{(n)} + P_{n}^{(n+1)} \big) : n \in \mathbb{N} \Big]$$

Quantum M-F Theorem (G. Sharygin will talk):

$$\left[\partial_{\xi}^{m}(x),\partial_{\xi}^{n}(y)\right]=0$$

Poisson Bracket on the Dual Space of a Lie Algebra

Quantum M-F Construction

Yasushi Iked

Outline

Introduction

Quantum M-

Second Sili

Conclusion

The Lie bracket of a Lie algebra $\mathfrak g$ extends uniquely to a Poisson bracket on the symmetric algebra $S(\mathfrak g)$. This Poisson bracket is called the Lie-Poisson bracket.

$$S(\mathfrak{g}) imes S(\mathfrak{g}) \xrightarrow{\mathsf{Lie-Poisson}} S(\mathfrak{g})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathfrak{g} imes \mathfrak{g} \qquad \xrightarrow{\mathsf{Lie}} \qquad \mathfrak{g}$$

■ The universal enveloping algebra $U(\mathfrak{g})$ is identified with the deformation quantisation of the Poisson algebra $S(\mathfrak{g})$ under the condition $\hbar = 1$.

Theorem of A. Mishchenko and A. Fomenko

Quantum M-F Construction

Yasushi Iked

Outline

Introduction

Quantum M

Second Shift

Conclusion

Referen

Theorem (A. Mishchenko and A. Fomenko, 1978)

Suppose that ∂_{ξ} is a constant vector field on the dual space \mathfrak{g}^* . We have

$$\left\{\partial_{\xi}^{m}(x),\partial_{\xi}^{n}(y)\right\}=0$$

for any m and n and for any Poisson central elements x and y of the symmetric algebra $S(\mathfrak{g})$.

Argument Shift Algebra and Vinberg's Problem

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

Quantum N

Formula

Second Shif

Conclusion

_ .

■ The Poisson commutative algebra $\overline{C_\xi}$ generated by

$$\left\{x, \partial_{\xi}(x), \partial_{\xi}^{2}(x), \dots : x \text{ is Poisson central } \right\}$$

is called the argument shift algebra.

- Vinberg asked whether the algebra $\overline{C_{\xi}}$ can be quantised to the commutative subalgebra C_{ξ} of the universal enveloping algebra with gr $C_{\xi} = \overline{C_{\xi}}$.
- Vinberg's problem is solved by the Feigin-Frenkel center
 - for regular elements ξ (Feigin et al. and Rybnikov).
 - for simple Lie algebras of types A and C (Futorny, Molev and Molev, Yakimova).
- We quantise not only the algebra $\overline{C_{\xi}}$ but also the argument shift ∂_{ξ} .

Derivation on $S\mathfrak{gl}(d,\mathbb{C})$

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

Quantum M-F

Second Shif

Conclusion

Reference

Let us consider $g = \mathfrak{gl}(d, \mathbb{C})$.

Let

$$\mathbf{e} = egin{pmatrix} e_1^1 & \dots & e_d^1 \ \dots & \dots & \dots \ e_1^d & \dots & e_d^d \end{pmatrix} \in Mig(d,\mathfrak{gl}(d,\mathbb{C})ig),$$

where e_j^i form a linear basis of $\mathfrak{gl}(d,\mathbb{C})$ and satisfy the commutation relation $[e_i^i,e_l^k]=e_i^k\delta_l^i-\delta_i^ke_l^i$.

A constant vector field on the dual space is given by

$$\partial_{\xi} = \operatorname{tr}(\xi \partial), \qquad \qquad \partial_{j}^{i} = \frac{\partial}{\partial e_{i}^{j}},$$

where ξ is a numerical matrix.

Derivation on $S\mathfrak{gl}(d,\mathbb{C})$

Quantum M-F Construction

Yasushi Ikeda

Outline

Quantum M-F

occoma om

Conclusion

Referenc

Remark

The derivation

$$S\mathfrak{gl}(d,\mathbb{C}) \to M(d,S\mathfrak{gl}(d,\mathbb{C})), \quad x \mapsto \partial x = (\partial_j^i x)_{i,j=1}^d$$

is a unique linear mapping satisfying the following.

- **1** We have $\partial \nu = 0$ for any scalar ν .
- **2** We have $\partial \operatorname{tr}(\xi e) = \xi$ for any numerical matrix ξ .
- 3 We have the Leibniz rule

$$\partial(xy) = (\partial x)y + x(\partial y)$$

for any elements x and y of the symmetric algebra.

Quantum Derivation on $U\mathfrak{gl}(d,\mathbb{C})$

Quantum M-F Construction

Yasushi Iked

Outline

Introduction

Quantum M-F

Formula

Second Shi

Conclusion

Reference

■ There is no such derivation ∂ on the universal enveloping algebra $U\mathfrak{gl}(d,\mathbb{C})$ since we obtain a contradiction

$$\begin{split} 0 &= \partial \left(e_j^i e_l^k - e_l^k e_j^i \right) & \text{(Leibniz rule)} \\ &= \partial \left(e_j^k \delta_l^i - \delta_j^k e_l^i \right) & \text{(commutation relation)} \\ &= E_j^k \delta_l^i - \delta_j^k E_l^i & \text{(second conditon)} \\ &\neq 0. \end{split}$$

 Gurevich, Pyatov, and Saponov defined the quantum derivation on the universal enveloping algebra.

Quantum Derivation on $U\mathfrak{gl}(d,\mathbb{C})$

Quantum M-F Construction

Yasushi Ikeda

Outline

IIItioduction

Quantum M-F

Quantum iv

Formula

Second Shift

Conclusion

Reference

Definition (Gurevich, Pyatov, and Saponov, 2012)

The quantum derivation

$$\boxed{U}_{\mathfrak{p}}\mathfrak{l}(d,\mathbb{C}) \to M(d,\boxed{U}_{\mathfrak{p}}\mathfrak{l}(d,\mathbb{C})), \quad x \mapsto \partial x = (\partial_{j}^{i}x)_{i,j=1}^{d}$$

is a unique linear mapping satisfying the following.

- **1** We have $\partial \nu = 0$ for any scalar ν .
- **2** We have $\partial \operatorname{tr}(\xi e) = \xi$ for any numerical matrix ξ .
- 3 We have the quantum Leibniz rule

$$\partial(xy) = (\partial x)y + x(\partial y) + (\partial x)(\partial y)$$

for any elements x and y of the universal enveloping algebra.

Quantum M-F Theorem

Quantum M-F Construction

Yasushi Iked

Outline

Quantum M-F

Theorem (I. and Sharygin, 2023)

Suppose that ξ is a numerical matrix and let $\partial_{\xi} = \operatorname{tr}(\xi \partial)$. We have

$$\left[\partial_{\xi}^{m}(x),\partial_{\xi}^{n}(y)\right]=0$$

for any m and n and for any central elements x and y of the universal enveloping algebra $U\mathfrak{gl}(d,\mathbb{C})$.

arXiv: 2307.15952

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

.

Formula

Second Shi

Conclusion

Reference

We assume the following form

$$\partial(e^n)^i_j = \sum_{m=0}^{n-1} \Big(g_m^{(n-1)}(e)_j(e^m)^i + h_m^{(n-1)}(e)(e^m)^i_j\Big),$$

where $g_m^{(n-1)}$ and $h_m^{(n-1)}$ are polynomials. We have

$$\partial(e^{n+1})_{j}^{i} = \sum_{m=0}^{n-1} \left(g_{m}^{(n-1)}(e) e + h_{m}^{(n-1)}(e) \right)_{j} (e^{m})^{i} + \delta_{j}(e^{n})^{i}$$

$$+ \sum_{m=0}^{n-1} \left(g_{m}^{(n-1)}(e) e^{m} \delta_{j}^{i} + h_{m}^{(n-1)}(e) (e^{m+1})_{j}^{i} \right)$$

by the quantum Leibniz rule and the commutation relation.

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

O N

Formula

Second Shif

Conclusion

We obtain the following recursion formulae:

$$g_m^{(n)}(x) = g_m^{(n-1)}(x)x + h_m^{(n-1)}(x) \text{ for } 0 \le m < n$$

$$g_n^{(n)}(x) = 1 \text{ for } 0 \le n$$

3
$$h_0^{(n)}(x) = \sum_{m=0}^{n-1} g_m^{(n-1)}(x) x^m$$
 for $0 \le n$

4
$$h_m^{(n)}(x) = h_{m-1}^{(n-1)}(x)$$
 for $0 < m \le n$

And the solutions to them are

$$g_m^{(n)}(x) = f_+^{(n-m)}(x), \qquad h_m^{(n)}(x) = f_-^{(n-m)}(x),$$

where

$$f_{\pm}^{(n)}(x) = \frac{(x+1)^n \pm (x-1)^n}{2} = \sum_{m=0}^n \frac{1 \pm (-1)^{n-m}}{2} \binom{n}{m} x^m.$$

Quantum M-F Construction

Yasushi Iked

Outline

meroduction

Quantum M-

Formula

Second Sin

Conclusion

Reference

We obtain the fundamental formula for the quantum derivation.

Theorem (I, 2022)

We have the formula

$$\partial(e^n)^i_j = \sum_{m=0}^{n-1} \Big(f_+^{(n-m-1)}(e)_j(e^m)^i + f_-^{(n-m-1)}(e)(e^m)^i_j\Big)$$

for any nonnegative integer n.

Quantum M-F Construction

Yasushi Ikeda

Outline

......

Quantum M-I

Formula

Second Shifts

Conclusion

Referen

The center C of the universal enveloping algebra $U\mathfrak{gl}(d,\mathbb{C})$

$$C\simeq \mathbb{C}ig[(\operatorname{tr} e^n)_{n=1}^dig]$$

is a free commutative algebra on the set $(\operatorname{tr} e^n)_{n=1}^d$.

Definition

We define $C_{\xi}^{(n)} = C[\partial_{\xi}x, \dots, \partial_{\xi}^{n}x : x \text{ is central}].$

Remark

 $C_{\xi} = \lim_{n \to \infty} C_{\xi}^{(n)}$ is the quantum argument shift algebra.

arXiv: 2309.15684

Corollary

We have
$$C_{\xi}^{(1)} = C[\operatorname{tr}(\xi e^n) : n \in \mathbb{N}].$$

Generators of Second Quantum Argument Shift

Quantum M-F Construction

Yasushi Ikec

Outline

miroduction

Quantum N

E.....

Second Shifts

2 . . .

Conclusion

14

The main theorem of my talk is the following.

Theorem (I, 2023)

We have

$$C_{\xi}^{(2)} = C_{\xi}^{(1)} \Big[\tau_{\xi} (P_n^{(n)}), \tau_{\xi} (P_{n+1}^{(n)} + P_n^{(n+1)}) : n \in \mathbb{N} \Big].$$

Generators of Second Quantum Argument Shift

Quantum M-F Construction

Yasushi Iked

Outline

Introduction

. .

Formula

Second Shifts

Conclusion

- -

Using the fundamental formula twice we obtain

$$\partial_{\xi}^2(\operatorname{tr} e^n) + C_{\xi}^{(1)} = \sum_{m=-1}^n \operatorname{tr} e^m$$

$$\sum_{k=-1}^{n-m-1} \operatorname{tr} \left(\xi \Big(\partial \operatorname{tr} \big(\xi f_{-}^{(n-m-k-2)}(e) \big) \Big) f_{-}^{(k)}(e) \right) + C_{\xi}^{(1)}. \quad (1)$$

We adopt the convention tr $e^{-1} = f_{-}^{(-1)}(x) = 1$.

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

Quantum M-F

Formula

Second Shifts

Conclusion

Reference

Definition

1 We define P_n as the n by n submatrix of the following matrix from the bottom left corner.

$$\begin{pmatrix} \vdots \\ f_{+}^{(4)}(x) \\ f_{+}^{(3)}(x) \\ f_{+}^{(2)}(x) \\ f_{+}^{(1)}(x) \\ f_{+}^{(0)}(x) \end{pmatrix} = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 6 & 0 & 1 & \cdots \\ 0 & 3 & 0 & 1 & 0 & \cdots \\ 1 & 0 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & 0 & \cdots \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \\ x^{4} \\ \vdots \end{pmatrix}$$

2 We define $P_n^{(m)}$ as the matrix P_n shifted to the right by m positions.

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

O M

Second Shifts

Conclusion

Referen

Definition

We define

$$au_{\xi}(A) = \operatorname{tr} \left(\left(\xi \quad \xi e \quad \cdots \quad \xi e^{n-1} \right) A \begin{pmatrix} \xi \\ \xi e \\ \vdots \\ \xi e^{n-1} \end{pmatrix} \right)$$

for any n by n numerical matrix A.

We have

$$\operatorname{tr}\left(\xi(\partial\operatorname{tr}(\xi e^n))e^m\right) + C_{\xi}^{(1)} = \tau_{\xi}(P_n^{(m)}) + C_{\xi}^{(1)}$$
 (2)

by the fundamental formula.

Quantum M-F Construction

Yasushi Ike

Outline

Introduction

Camazada

Second Shifts

Conclusion

Reference

We obtain

$$C_{\xi}^{(2)} = C_{\xi}^{(1)} \Big[\tau_{\xi} \big(P_{n}^{(m)} + P_{m}^{(n)} \big) : m, n \in \mathbb{N} \Big]$$

by the equations (1) and (2).

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

Quantum M

Formula

Second Shifts

. . . .

Conclusion

Referen

Definition

We define

$$\sigma(A) = \begin{pmatrix} A_1^1 & A_2^1 + A_1^2 & \cdots & A_n^1 + A_1^n \\ 0 & A_2^2 & \cdots & A_n^2 + A_2^n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n^n \end{pmatrix}$$

for any n by n numerical matrix A.

Lemma

We have
$$\tau_{\xi}(\sigma(A)) = \tau_{\xi}(A)$$
.

Main Theorem (Matrix Form)

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

.....

Eorm.

Second Shifts

Conclusion

Reference

Theorem (I, 2023)

We have

$$\sigma \begin{pmatrix} 0 & P_{m+2n} \\ P_m^T & 0 \end{pmatrix} = \sum_{k=0}^n \left(\binom{2n-k}{k} + \binom{2n-k-1}{k-1} \right) P_{m+k}^{(m+k)}$$

and

$$\sigma \begin{pmatrix} 0 & P_{m+2n+1} \\ P_m^T & 0 \end{pmatrix} = \sum_{k=0}^n \binom{2n-k}{k} \left(P_{m+k+1}^{(m+k)} + P_{m+k}^{(m+k+1)} \right)$$

for any nonnegative integers m and n.

Equivalent Formulae (Even Case)

Quantum M-F Construction

Yasushi Ikeda

Outline

Introduction

Quantum M-F

Formula

Second Shifts

Conclusion

Б.

The first formula of the theorem is equivalent to the following.

1 We have

$$\binom{2n_1 + n_2 + 2n_3 + 1}{2n_3} + \binom{n_2 + 2n_3}{2n_3}$$

$$= \sum_{n_4=0}^{n_3} \left(\binom{n_1 + n_2 + n_3 + n_4 + 1}{2n_4} + \binom{n_1 + n_2 + n_3 + n_4}{2n_4} \right)$$

$$\binom{n_1 + n_3 - n_4}{2(n_3 - n_4)}$$

for any nonnegative integers $(n_k)_{k=1}^3$.

Equivalent Formulae (Even Case)

Quantum M-F Construction

Yasushi Iked

Outline

Introduction

.....

Earm.

Second Shifts

Conclusio

We have

$$f_{+}^{(m+2n)}(x) + f_{+}^{(m)}(x)x^{2n}$$

$$= \sum_{k=0}^{n} \left({2n-k \choose k} + {2n-k-1 \choose k-1} \right) x^{k} f_{+}^{(m+k)}(x)$$

for any nonnegative integers m and n.

Equivalent Formulae (Even Case)

Quantum M-F Construction

Outline

Introduction

Quantum M-F

Tormula

Second Shifts

Conclusior

These formulae can be verified with Mathematica:

Conclusion

Quantum M-F Construction

Yasushi Iked

Outline ntroduction Quantum M-

Formula Second Shifts

Conclusion

References

- We replace the derivation on the symmetric algebra $S\mathfrak{gl}(d,\mathbb{C})$ by the quantum derivation on the universal enveloping algebra $U\mathfrak{gl}(d,\mathbb{C})$ in order to formulate the quantum analogue of the Mishchenko-Fomenko theorem.
- We can calculate iterated quantum argument shifts of central elements by the formula.
- The list of generators for the second order quantum argument shifts could be alternative to the lists suggested by Molev and others.

References

Quantum M-F Construction

References

- [1] Dimitri Gurevich, Pavel Pyatov, and Pavel Saponov. "Braided Weyl algebras and differential calculus on U(u(2))". In: Journal of Geometry and Physics 62.5 (2012), pp. 1175–1188.
- Yasushi Ikeda. "Quasidifferential operator and quantum [2] argument shift method". In: Theoretical and Mathematical Physics 212.1 (2022), pp. 918–924.
- [3] Yasushi Ikeda. "Second Quantum Argument Shifts in General Linear Lie Algebras". in preparation.
- [4] Yasushi Ikeda, Alexander Moley, and Georgy Sharygin. On the quantum argument shift method. 2023. arXiv: 2309.15684 [math.RT].
- [5] Yasushi Ikeda and Gerogy Sharygin. The argument shift method in universal enveloping algebra Ugl_d. 2023. arXiv: 2307.15952 [math.RT]. 4 D > 4 B > 4 B > 4 B > 9 Q P