Functional Analysis

Yasushi Ikeda

November 22, 2022

Contents

1	$\begin{array}{c} 1.1 \\ 1.2 \end{array}$	ic TheoryLocally Convex SpacesNormed Vector SpacesHahn-Banach Theorem	4
2	$2.1 \\ 2.2 \\ 2.3$	anced TheoryGelfand-Pettis IntegralBochner IntegralVector MeasuresComplex Analysis	7 9

Chapter 1

Basic Theory

1.1 Locally Convex Spaces

- Remark 1.1.1. 1. Suppose that $(f_i \colon X \to Y_i)_i$ is a family of continuous mappings. There exists a unique continuous mapping $\prod_i f_i \colon X \to \prod_i Y_i$ such that $f_i = p_i \circ \prod_i f_i$ for $\forall i$.
 - 2. $\prod_i G_i$ is a topological group for a family $\forall (G_i)_i$ of topological groups.
 - 3. Suppose that $(f_i: G \to H_i)_i$ is a family of continuous homomorphisms of topological groups. $\prod_i f_i$ is the unique continuous homomorphism such that $f_i = p_i \circ \prod_i f_i$ for $\forall i$.

Theorem 1.1.1. Suppose that X is a finite dimensional complex (resp. real) vector space. There exists a unique locally convex topology on X.

- *Remark* 1.1.2. 1. A subspace of a topological vector (resp. locally convex) space is a topological vector (resp. locally convex) space.
 - 2. The closure of a subspace of a topological vector space is a subspace.
 - 3. The quotient space of a topological vector space by a closed subspace is a topological vector space.
 - 4. The quotient topological vector space of a locally convex space is a locally convex space. The quotient topology is generated by the sufficient set

$$\left\{ \left[x \right] \mapsto \left\| \left[x \right] \right\| = \inf_{[x']=[x]} \left\| x' \right\| : \left\| \cdot \right\| \text{ is a continuous seminorm} \right\}$$

of seminorms.

5. $\prod_i X_i$ is a topological vector space for a family $\forall (X_i)_i$ of topological vector spaces.

6. $\prod_i X_i$ is a locally convex space and the topology of $\prod_i X_i$ is generated by the sufficient set

$$\bigcup_{i} \{ x \mapsto \|x_i\|_i : \|\cdot\|_i \in S_i \}$$

of seminorms on $\prod_i X_i$ for a family $\forall (S_i)_i$ such that S_i is a sufficient set of seminorms on X_i generating the topology of X_i for $\forall i$ for a family $\forall (X_i)_i$ of locally convex spaces.

- *Remark* 1.1.3. 1. A convex set of a locally convex space is closed if and only if it is weakly closed.
 - 2. The weak topology of a quotient locally convex space is the quotient topology of the weak topology.
 - 3. The weak topology of a product locally convex space is the product topology of the weak topologies.
- *Remark* 1.1.4. 1. The dual space of a closed subspace of a locally convex (resp. normed vector) space is the quotient space of the dual space by the polar set and the weak^{*} topology is the quotient topology of the weak^{*} topology.
 - 2. The dual space of a quotient locally convex (resp. normed vector) space is the polar set and the weak^{*} topology is the relative weak^{*} topology.
 - 3. The dual space of a product locally convex space is the algebraic direct sum of the dual spaces and the weak^{*} topology is the relative product topology of the weak^{*} topologies.

Remark 1.1.5. A linear mapping of topological vector spaces is continuous if and only if it is continuous at 0.

Remark 1.1.6. The closed convex hull of a countable set of a locally convex space is separable.

Remark 1.1.7. If F is a subset of a locally convex space such that $K = \overline{\text{conv}} F$ is compact then ext K is a subset of \overline{F} .

Remark 1.1.8.

$$\overline{\operatorname{conv}}(K_1 \cup \cdots \cup K_n) = \operatorname{conv}(K_1 \cup \cdots \cup K_n)$$

for compact convex sets $\forall K_1, \ldots, \forall K_n$ of a locally convex space.

Remark 1.1.9. The sum of a closed set and a compact set of a topological vector space is closed.

Remark 1.1.10. The subspace generated by a closed subspace and a finite subset of a locally convex space is closed.

Remark 1.1.11. A topological vector space is separable if and only if it is the closed subspace generated by a countable subset.

1.2 Normed Vector Spaces

Theorem 1.2.1. Suppose that X is a finite dimensional complex (resp. real) vector space. There exists a unique norm on X up to equivalence.

Remark 1.2.1. Suppose that $\|\cdot\|_1$ and $\|\cdot\|_2$ are norms on a finite dimensional complex (resp. real) vector space.

$$\{x: \|x\|_1 \le 1\} \simeq \{x: \|x\|_2 \le 1\}.$$

Remark 1.2.2. A Cauchy sequence of a metric space converges if there exists a convergent subsequence.

Remark 1.2.3. A normed vector space is a Banach space if and only if $\lim_{n\to\infty} \sum_{k=1}^n a_k$ exists for a sequence $\forall (a_n)_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} ||a_n|| < \infty$.

Remark 1.2.4. |(x,y)| = ||x|| ||y|| if and only if x and y are linearly dependent for $\forall x$ and $\forall y$ of an inner product space.

- *Remark* 1.2.5. 1. A subspace of a normed vector space is a normed vector space.
 - 2. The quotient locally convex space of a normed vector (resp. Banach) space is a normed vector (resp. Banach) space with respect to the norm

$$||[x]|| = \inf_{[x']=[x]} ||x'||$$

Remark 1.2.6. Suppose that X and Y are normed vector spaces.

- 1. $(x, y) \mapsto ||(x, y)|| = ||x|| + ||y||$ is a norm on $X \times Y$.
- 2. $X \times Y$ is complete if and only if X and Y are complete.

Remark 1.2.7. Suppose that A is a linear mapping of normed vector spaces. The following are equivalent.

- 1. A is continuous at some point.
- 2. A is bounded.
- 3. A is uniformly continuous.

Proposition 1.2.1. B(X,Y) is a Banach (resp. normed vector) space for a normed vector space $\forall X$ and for a Banach (resp. normed vector) space $\forall Y$.

Theorem 1.2.2 (Uniform Boundedness Theorem). A pointwise bounded subset of B(X, Y) is bounded for a Banach space $\forall X$ and for a normed vector space $\forall Y$.

Theorem 1.2.3 (Banach-Steinhaus Theorem). $x \mapsto \lim_{n\to\infty} A_n(x)$ is a bounded linear mapping for a sequence $\forall (A_n)_{n=1}^{\infty}$ of bounded linear mappings of a Banach space into a normed vector space such that $\lim_{n\to\infty} A_n(x)$ exists for $\forall x$. **Theorem 1.2.4** (Open Mapping Theorem). A surjective bounded linear mapping of Banach spaces is an open mapping.

Definition 1.2.1. Suppose that A is a bounded linear mapping of a normed vector space X into a normed vector space Y. The bounded linear mapping

 $A^* \colon Y^* \to X^*, \qquad \qquad f \mapsto f \circ A$

is called the adjoint of A.

Remark 1.2.8. $||A^*|| = ||A||$.

Proposition 1.2.2. A normed vector space is a weakly^{*} dense subspace of the second dual space.

Theorem 1.2.5. A normed vector space is reflexive if and only if the unit ball is weakly compact.

Theorem 1.2.6. The unit ball of the dual space of a separable normed vector space is weakly^{*} metrizable.

Corollary 1.2.1. The dual space of a separable normed vector space is weakly^{*} separable.

Theorem 1.2.7. A weakly^{*} compact set of the dual space of a Banach space is bounded.

Corollary 1.2.2. A weakly compact set of a normed vector space is bounded.

1.3 Hahn-Banach Theorem

Definition 1.3.1. A real-valued function p on a real vector space X is called a sublinear functional if it satisfies the following.

- 1. p(tx) = tp(x) for $\forall t \ge 0$ and for $\forall x$ of X.
- 2. $p(x+y) \leq p(x) + p(y)$ for $\forall x$ and $\forall y$ of X.

Theorem 1.3.1 (Hahn-Banach Theorem for Real Vector Spaces). Suppose that p is a sublinear functional on a real vector space X. A linear functional f_0 on a subspace X_0 such that $f_0 \leq p$ on X_0 extends to a linear functional f on X such that $f \leq p$ on X.

Remark 1.3.1. A complex-valued real linear function f on a complex vector space is complex linear if f(ix) = if(x) for $\forall x$.

Theorem 1.3.2 (Hahn-Banach Theorem for Vector Spaces). A linear functional on a subspace of a real or complex vector space dominated by a seminorm extends to a linear functional on the whole space dominated by the seminorm.

Definition 1.3.2. A subset A of a real vector space X is said to be absorbing if $X = \bigcup_{t>0} tA$.

Remark 1.3.2. $x \mapsto \inf\{t > 0 : x \in tC\}$ is a sublinear functional for a convex absorbing set $\forall C$.

Theorem 1.3.3 (Hahn-Banach Theorem for Topological Vector Spaces). Suppose that O is an open convex set and C is a convex set of a topological vector space such that $O \cap C$ is empty. There exists a continuous linear functional f such that $\operatorname{Re} f(O)$ is a subset of $(-\infty, \inf \operatorname{Re} f(C))$.

Theorem 1.3.4 (Hahn-Banach Theorem for Locally Convex Spaces). Suppose that F is a closed convex set and K is a compact convex set of a locally convex space such that $F \cap K$ is empty. There exists a continuous linear functional fsuch that $\sup \operatorname{Re} f(F) < \inf \operatorname{Re} f(K)$.

Proposition 1.3.1. A continuous linear functional on a subspace of a locally convex space extends to a continuous linear functional.

Theorem 1.3.5 (Hahn-Banach Theorem for Normed Vector Spaces). A bounded linear functional f_0 on a subspace of a normed vector space extends to a bounded linear functional f on the whole space such that $||f|| = ||f_0||$.

Theorem 1.3.6. Suppose that Y is a subspace of a normed vector space and that x_0 is a vector such that $\inf ||x_0 - Y|| > 0$. There exists a bounded linear functional f such that Y is a subset of ker f and

$$f(x_0) = \inf ||x_0 - Y||, \qquad ||f|| = 1.$$

Corollary 1.3.1. Suppose that x_0 is a nonzero vector of a normed vector space. There exists a bounded linear functional f such that $f(x_0) = ||x_0||$ and ||f|| = 1.

Chapter 2

Advanced Theory

2.1 Gelfand-Pettis Integral

Definition 2.1.1. A mapping f of a measurable space into a locally convex space A is said to be Gelfand-Pettis measurable if $\sigma \circ f$ is measurable for a continuous linear functional $\forall \sigma$ on A.

Definition 2.1.2. A Gelfand-Pettis measurable mapping f of a measure space μ into a locally convex space A is said to be Gelfand-Pettis integrable if there exists

$$\int f \, d\mu$$

of A such that $\sigma \circ f$ is integrable and

$$\sigma \int f \, d\mu = \int \sigma \circ f \, d\mu$$

for a continuous linear functional $\forall \sigma$ on A.

Remark 2.1.1. A weakly^{*} Gelfand-Pettis measurable mapping f of a measure space (X, μ) into the dual space of a Banach space is weakly^{*} Gelfand-Pettis integrable if $f(\cdot)(\sigma)$ is integrable for $\forall \sigma$ and the linear functional

$$\sigma \mapsto \int f(x)(\sigma)\mu(dx)$$

is bounded.

2.2 Bochner Integral

Suppose that (X, μ) is a complete measure space and that A is a Banach space.

Definition 2.2.1. A mapping f of X into A is said to be Bochner measurable if there exists a sequence $(f_n)_{n=1}^{\infty}$ of simple mappings of X into A such that $\lim_{n\to\infty} f_n = f$ a.e.

Definition 2.2.2. A mapping f of X into A is said to be Bochner integrable if there exists a sequence $(f_n)_{n=1}^{\infty}$ of simple mappings of X into A satisfying the following.

- 1. $\mu((f_n)^{-1}(A \setminus \{0\})) < \infty$ for $\forall n$.
- 2. $||f_n f||$ is measurable for $\forall n$ and

$$\lim_{n \to \infty} \int \|f_n - f\| \, d\mu = 0$$

Proposition 2.2.1. A Bochner integrable mapping is Bochner measurable.

- *Remark* 2.2.1. 1. A Bochner measurable (resp. integrable) mapping is Gelfand-Pettis measurable (resp. integrable).
 - 2. A function is Bochner measurable (resp. integrable) if and only if it is measurable (resp. integrable).

Proposition 2.2.2. A mapping f of a σ -finite complete measure space into a Banach space is Bochner measurable if and only if there exists a sequence $(f_n)_{n=1}^{\infty}$ of Bochner integrable simple mappings such that $\lim_{n\to\infty} f_n = f$ a.e.

Proposition 2.2.3. A mapping f of a σ -finite complete measure space into a Banach space is Bochner measurable if there exists a sequence $(f_n)_{n=1}^{\infty}$ of Bochner measurable mappings such that $\lim_{n\to\infty} f_n = f$ a.e.

Theorem 2.2.1 (Pettis Measurability Theorem). A Gelfand-Pettis measurable mapping f of a σ -finite complete measure space into a Banach space is Bochner measurable if and only if there exists a null set N such that $f(X \setminus N)$ is separable.

Proposition 2.2.4. A continuous mapping of the completion of a σ -finite Borel measure space on a separable locally compact Hausdorff space into a Banach space is Bochner measurable.

Proposition 2.2.5.

$$\|\int f\,d\mu\|\leq\int\|f\|\,d\mu$$

for a Bochner integrable mapping $\forall f$.

Proposition 2.2.6. A Bochner measurable mapping is Bochner integrable if and only if the norm is integrable.

Definition 2.2.3. We denote the vector space of equivalence classes of elements of the vector space of Bochner measurable mappings by $M(\mu, A)$.

Remark 2.2.2. $M(\mu, A)$ is a complex algebra (resp. *-algebra) if A is a Banach algebra (resp. Banach *-algebra).

Proposition 2.2.7.

$$L^{p}(\mu, A) = \left\{ f \in M(\mu, A) : \|f\|_{p} = \left(\int \|f\|^{p} \, d\mu\right)^{1/p} < \infty \right\}$$

is a Banach space for $1 \leq \forall p < \infty$.

Remark 2.2.3. $L^p(\mu, \mathbb{C}) = L^p(\mu)$ for $1 \leq \forall p < \infty$.

Proposition 2.2.8. Suppose that H is a Hilbert space.

1. $L^{2}(\mu, H)$ is a Hilbert space with respect to the inner product

$$(f,g) = \int (f(x),g(x))\mu(dx).$$

2. $L^2(\mu, H) \simeq L^2(\mu) \otimes H$.

Proposition 2.2.9. Suppose that μ is σ -finite.

$$L^{\infty}(\mu, A) = \left\{ f \in M(\mu, A) : \|f\|_{\infty} = \min\{ m : \|f\| \le m \} \right\}$$
$$= \min_{\mu(N)=0} \sup_{x \in X \setminus N} \|f(x)\| < \infty \right\}$$

is a Banach space.

Remark 2.2.4. 1. $L^{\infty}(\mu, \mathbb{C}) = L^{\infty}(\mu)$.

- 2. $L^{\infty}(\mu, A)$ is a Banach algebra (resp. Banach *-algebra) if A is a Banach algebra (resp. Banach *-algebra).
- 3. $L^{\infty}(\mu, A)$ is a C*-algebra if A is a C*-algebra.

2.3 Vector Measures

Definition 2.3.1. A mapping of a σ -algebra into a locally convex space is called a vector measure if it is countably additive.

Proposition 2.3.1. The composition of a continuous linear functional and a vector measure is a complex measure.

2.4 Complex Analysis

Definition 2.4.1. A mapping f of an open set U of a complex (resp. real) normed vector space X into a complex (resp. real) topological vector space Y

is said to be differentiable at a point x_0 of U if there exists a continuous linear mapping $f^{(1)}(x_0)$ of X into Y such that

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0) - f^{(1)}(x_0)(x_n - x_0)}{\|x_n - x_0\|} = 0$$
(2.1)

for a sequence $\forall (x_n)_{n=1}^{\infty}$ of $U \setminus \{x_0\}$ such that $\lim_{n \to \infty} x_n = x_0$. In this case f is continuous at x_0 and $f^{(1)}(x_0)$ is unique.

Proposition 2.4.1. A mapping f of an open set U of \mathbb{C} (resp. \mathbb{R}) into a complex (resp. real) topological vector space is differentiable at a point x_0 of U if and only if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{2.2}$$

exists. In this case

$$f^{(1)}(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (2.3)

Proposition 2.4.2. fg is differentiable at x_0 and

$$(fg)^{(1)}(x_0) = f^{(1)}(x_0)g(x_0) + f(x_0)g^{(1)}(x_0)$$

for mappings $\forall f \text{ and } \forall g \text{ of an open set } U \text{ of } \mathbb{C} \text{ (resp. } \mathbb{R}) \text{ into a normed algebra differentiable at a point } x_0 \text{ of } U.$

Proposition 2.4.3. (f,g) is differentiable at x_0 and

$$(f,g)^{(1)}(x_0) = (f^{(1)}(x_0), g(x_0)) + (f(x_0), g^{(1)}(x_0))$$

for mappings $\forall f \text{ and } \forall g \text{ of an open set } U \text{ of } \mathbb{R} \text{ into a Hilbert space differentiable}$ at a point x_0 of U.

Definition 2.4.2. A mapping of an open set U of \mathbb{C} into a complex topological vector space is said to be holomorphic if it is differentiable at $\forall z$ of U.

Theorem 2.4.1. Suppose that f is a mapping of an open set U of \mathbb{C} into a complex Banach space A. The following are equivalent.

- 1. f is holomorphic.
- 2. Suppose that z_0 is a point of U. There exist R > 0 and a sequence $(a_n)_{n=1}^{\infty}$ of A such that

$$f(z) = \lim_{n \to \infty} \sum_{k=0}^{n} (z - z_0)^k a_k$$
(2.4)

for $\forall z \text{ of } B(z_0, R)$.

3. $\sigma \circ f$ is holomorphic for a bounded linear functional $\forall \sigma$ on A.

In this case $(\sigma \circ f)^{(n)} = \sigma \circ f^{(n)}$ for a bounded linear functional $\forall \sigma$ on A and for $\forall n = 0, 1, \ldots$

Theorem 2.4.2. A mapping f of an open set U into the dual space of a complex Banach space such that $f(\cdot)(\sigma)$ is holomorphic for $\forall \sigma$ is holomorphic.

Theorem 2.4.3. Suppose that f is a holomorphic mapping of the open disk of radius R > 0 centered at a point z_0 of \mathbb{C} into a complex Banach space.

$$\sum_{n=0}^{\infty} \frac{|z-z_0|^n}{n!} \|f^{(n)}(z_0)\| < \infty$$
(2.5)

and

$$f(z) = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{n!} f^{(n)}(z_0)$$
(2.6)

for $\forall z \text{ of } B(z_0, R)$.

Proposition 2.4.4. Suppose that f is a continuous mapping of the image of a piecewise continuously differentiable curve C of the complex plane into a complex Banach space A. There exists a unique

$$\int_C f(z) \, dz \tag{2.7}$$

of A such that

$$\sigma \int_{C} f(z) \, dz = \int_{C} (\sigma \circ f)(z) \, dz \tag{2.8}$$

for a bounded linear functional $\forall \sigma$ on A.

Theorem 2.4.4 (Phragmén-Lindelöf). Suppose that

$$D = \left\{ z \in \mathbb{C} : -\frac{\pi}{2} < \operatorname{Im} z < \frac{\pi}{2} \right\}$$
(2.9)

and that f is a mapping into a Banach space continuous on \overline{D} holomorphic on D.

$$\sup_{z \in D} \|f(z)\| = \sup_{z \in \partial D} \|f(z)\|$$
(2.10)

if there exists $0 \leq C < 1$ such that

$$\sup_{z \in D} \frac{\|f(z)\|}{\exp(\cosh(C \operatorname{Re} z))} < \infty.$$
(2.11)

Theorem 2.4.5. Suppose that f is a mapping into a Banach space bounded continuous on $\mathbb{R} \times [0,1]$ holomorphic on $\mathbb{R} \times (0,1)$.

$$\sup_{\mathrm{Im}\,z=y} \|f(z)\| \le (\sup_{\mathrm{Im}\,z=0} \|f(z)\|)^{1-y} (\sup_{\mathrm{Im}\,z=1} \|f(z)\|)^y \le \sup_{\mathrm{Im}\,z=0,1} \|f(z)\|$$

for $0 \leq \forall y \leq 1$.

Corollary 2.4.1. Suppose that f is a mapping into a Banach space bounded continuous on $\mathbb{R} \times [0,1]$ holomorphic on $\mathbb{R} \times (0,1)$.

$$\sup_{0<{\rm Im}\,z<1} \|f(z)\| = \sup_{{\rm Im}\,z=0,1} \|f(z)\|$$

Corollary 2.4.2. Suppose that f is a mapping into a Banach space bounded continuous on $\mathbb{R} \times [0,1]$ holomorphic on $\mathbb{R} \times (0,1)$. If

$$\sup_{\operatorname{Im} z=0} \|f(z)\| = 0$$

then f = 0.

Bibliography

- [1] John B. Conway. A course in functional analysis. Number 96 in Graduate texts in mathematics. Springer, 2nd edition, 2010.
- [2] Jorge Mujica. Complex analysis in Banach spaces : holomorphic functions and domains of holomorphy in finite and infinite dimensions. Number 120 in North-Holland mathematics studies. North-Holland, Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1986.