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Chapter 1

Basic Theory

1.1 Locally Convex Spaces

Remark 1.1.1. 1. Suppose that (fi : X → Yi)i is a family of continuous map-
pings. There exists a unique continuous mapping

∏
i fi : X →

∏
i Yi such

that fi = pi ◦
∏
i fi for ∀i.

2.
∏
iGi is a topological group for a family ∀(Gi)i of topological groups.

3. Suppose that (fi : G→ Hi)i is a family of continuous homomorphisms of
topological groups.

∏
i fi is the unique continuous homomorphism such

that fi = pi ◦
∏
i fi for ∀i.

Theorem 1.1.1. Suppose that X is a finite dimensional complex (resp. real)
vector space. There exists a unique locally convex topology on X.

Remark 1.1.2. 1. A subspace of a topological vector (resp. locally convex)
space is a topological vector (resp. locally convex) space.

2. The closure of a subspace of a topological vector space is a subspace.

3. The quotient space of a topological vector space by a closed subspace is a
topological vector space.

4. The quotient topological vector space of a locally convex space is a locally
convex space. The quotient topology is generated by the sufficient set{

[x] 7→ ‖[x]‖ = inf
[x′]=[x]

‖x′‖ : ‖·‖ is a continuous seminorm

}
of seminorms.

5.
∏
iXi is a topological vector space for a family ∀(Xi)i of topological vector

spaces.
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6.
∏
iXi is a locally convex space and the topology of

∏
iXi is generated by

the sufficient set ⋃
i

{x 7→ ‖xi‖i : ‖·‖i ∈ Si }

of seminorms on
∏
iXi for a family ∀(Si)i such that Si is a sufficient set of

seminorms on Xi generating the topology of Xi for ∀i for a family ∀(Xi)i
of locally convex spaces.

Remark 1.1.3. 1. A convex set of a locally convex space is closed if and only
if it is weakly closed.

2. The weak topology of a quotient locally convex space is the quotient topol-
ogy of the weak topology.

3. The weak topology of a product locally convex space is the product topol-
ogy of the weak topologies.

Remark 1.1.4. 1. The dual space of a closed subspace of a locally convex
(resp. normed vector) space is the quotient space of the dual space by the
polar set and the weak∗ topology is the quotient topology of the weak∗

topology.

2. The dual space of a quotient locally convex (resp. normed vector) space
is the polar set and the weak∗ topology is the relative weak∗ topology.

3. The dual space of a product locally convex space is the algebraic direct
sum of the dual spaces and the weak∗ topology is the relative product
topology of the weak∗ topologies.

Remark 1.1.5. A linear mapping of topological vector spaces is continuous if
and only if it is continuous at 0.

Remark 1.1.6. The closed convex hull of a countable set of a locally convex
space is separable.

Remark 1.1.7. If F is a subset of a locally convex space such that K = convF
is compact then extK is a subset of F .

Remark 1.1.8.

conv(K1 ∪ · · · ∪Kn) = conv(K1 ∪ · · · ∪Kn)

for compact convex sets ∀K1, . . . , ∀Kn of a locally convex space.

Remark 1.1.9. The sum of a closed set and a compact set of a topological vector
space is closed.

Remark 1.1.10. The subspace generated by a closed subspace and a finite subset
of a locally convex space is closed.

Remark 1.1.11. A topological vector space is separable if and only if it is the
closed subspace generated by a countable subset.
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1.2 Normed Vector Spaces

Theorem 1.2.1. Suppose that X is a finite dimensional complex (resp. real)
vector space. There exists a unique norm on X up to equivalence.

Remark 1.2.1. Suppose that ‖·‖1 and ‖·‖2 are norms on a finite dimensional
complex (resp. real) vector space.

{x : ‖x‖1 ≤ 1 } ' {x : ‖x‖2 ≤ 1 }.

Remark 1.2.2. A Cauchy sequence of a metric space converges if there exists a
convergent subsequence.

Remark 1.2.3. A normed vector space is a Banach space if and only if limn→∞
∑n
k=1 ak

exists for a sequence ∀(an)∞n=1 such that
∑∞
n=1‖an‖ <∞.

Remark 1.2.4. |(x, y)| = ‖x‖‖y‖ if and only if x and y are linearly dependent
for ∀x and ∀y of an inner product space.

Remark 1.2.5. 1. A subspace of a normed vector space is a normed vector
space.

2. The quotient locally convex space of a normed vector (resp. Banach) space
is a normed vector (resp. Banach) space with respect to the norm

‖[x]‖ = inf
[x′]=[x]

‖x′‖.

Remark 1.2.6. Suppose that X and Y are normed vector spaces.

1. (x, y) 7→ ‖(x, y)‖ = ‖x‖+ ‖y‖ is a norm on X × Y .

2. X × Y is complete if and only if X and Y are complete.

Remark 1.2.7. Suppose that A is a linear mapping of normed vector spaces.
The following are equivalent.

1. A is continuous at some point.

2. A is bounded.

3. A is uniformly continuous.

Proposition 1.2.1. B(X,Y ) is a Banach (resp. normed vector) space for a
normed vector space ∀X and for a Banach (resp. normed vector) space ∀Y .

Theorem 1.2.2 (Uniform Boundedness Theorem). A pointwise bounded subset
of B(X,Y ) is bounded for a Banach space ∀X and for a normed vector space
∀Y .

Theorem 1.2.3 (Banach-Steinhaus Theorem). x 7→ limn→∞An(x) is a bounded
linear mapping for a sequence ∀(An)∞n=1 of bounded linear mappings of a Banach
space into a normed vector space such that limn→∞An(x) exists for ∀x.
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Theorem 1.2.4 (Open Mapping Theorem). A surjective bounded linear map-
ping of Banach spaces is an open mapping.

Definition 1.2.1. Suppose that A is a bounded linear mapping of a normed
vector space X into a normed vector space Y . The bounded linear mapping

A∗ : Y ∗ → X∗, f 7→ f ◦A

is called the adjoint of A.

Remark 1.2.8. ‖A∗‖ = ‖A‖.

Proposition 1.2.2. A normed vector space is a weakly∗ dense subspace of the
second dual space.

Theorem 1.2.5. A normed vector space is reflexive if and only if the unit ball
is weakly compact.

Theorem 1.2.6. The unit ball of the dual space of a separable normed vector
space is weakly∗ metrizable.

Corollary 1.2.1. The dual space of a separable normed vector space is weakly∗

separable.

Theorem 1.2.7. A weakly∗ compact set of the dual space of a Banach space is
bounded.

Corollary 1.2.2. A weakly compact set of a normed vector space is bounded.

1.3 Hahn-Banach Theorem

Definition 1.3.1. A real-valued function p on a real vector space X is called
a sublinear functional if it satisfies the following.

1. p(tx) = tp(x) for ∀t ≥ 0 and for ∀x of X.

2. p(x+ y) ≤ p(x) + p(y) for ∀x and ∀y of X.

Theorem 1.3.1 (Hahn-Banach Theorem for Real Vector Spaces). Suppose that
p is a sublinear functional on a real vector space X. A linear functional f0 on
a subspace X0 such that f0 ≤ p on X0 extends to a linear functional f on X
such that f ≤ p on X.

Remark 1.3.1. A complex-valued real linear function f on a complex vector
space is complex linear if f(ix) = if(x) for ∀x.

Theorem 1.3.2 (Hahn-Banach Theorem for Vector Spaces). A linear func-
tional on a subspace of a real or complex vector space dominated by a seminorm
extends to a linear functional on the whole space dominated by the seminorm.

Definition 1.3.2. A subset A of a real vector space X is said to be absorbing
if X =

⋃
t>0 tA.
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Remark 1.3.2. x 7→ inf{ t > 0 : x ∈ tC } is a sublinear functional for a convex
absorbing set ∀C.

Theorem 1.3.3 (Hahn-Banach Theorem for Topological Vector Spaces). Sup-
pose that O is an open convex set and C is a convex set of a topological vector
space such that O ∩ C is empty. There exists a continuous linear functional f
such that Re f(O) is a subset of (−∞, inf Re f(C)).

Theorem 1.3.4 (Hahn-Banach Theorem for Locally Convex Spaces). Suppose
that F is a closed convex set and K is a compact convex set of a locally convex
space such that F ∩K is empty. There exists a continuous linear functional f
such that sup Re f(F ) < inf Re f(K).

Proposition 1.3.1. A continuous linear functional on a subspace of a locally
convex space extends to a continuous linear functional.

Theorem 1.3.5 (Hahn-Banach Theorem for Normed Vector Spaces). A bounded
linear functional f0 on a subspace of a normed vector space extends to a bounded
linear functional f on the whole space such that ‖f‖ = ‖f0‖.

Theorem 1.3.6. Suppose that Y is a subspace of a normed vector space and
that x0 is a vector such that inf‖x0 − Y ‖ > 0. There exists a bounded linear
functional f such that Y is a subset of ker f and

f(x0) = inf‖x0 − Y ‖, ‖f‖ = 1.

Corollary 1.3.1. Suppose that x0 is a nonzero vector of a normed vector space.
There exists a bounded linear functional f such that f(x0) = ‖x0‖ and ‖f‖ = 1.
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Chapter 2

Advanced Theory

2.1 Gelfand-Pettis Integral

Definition 2.1.1. A mapping f of a measurable space into a locally convex
space A is said to be Gelfand-Pettis measurable if σ ◦ f is measurable for a
continuous linear functional ∀σ on A.

Definition 2.1.2. A Gelfand-Pettis measurable mapping f of a measure space
µ into a locally convex space A is said to be Gelfand-Pettis integrable if there
exists ∫

f dµ

of A such that σ ◦ f is integrable and

σ

∫
f dµ =

∫
σ ◦ f dµ

for a continuous linear functional ∀σ on A.

Remark 2.1.1. A weakly∗ Gelfand-Pettis measurable mapping f of a measure
space (X,µ) into the dual space of a Banach space is weakly∗ Gelfand-Pettis
integrable if f(·)(σ) is integrable for ∀σ and the linear functional

σ 7→
∫
f(x)(σ)µ(dx)

is bounded.

2.2 Bochner Integral

Suppose that (X,µ) is a complete measure space and that A is a Banach space.

Definition 2.2.1. A mapping f of X into A is said to be Bochner measurable
if there exists a sequence (fn)∞n=1 of simple mappings of X into A such that
limn→∞ fn = f a.e.
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Definition 2.2.2. A mapping f of X into A is said to be Bochner integrable if
there exists a sequence (fn)∞n=1 of simple mappings of X into A satisfying the
following.

1. µ((fn)−1(A \ {0})) <∞ for ∀n.

2. ‖fn − f‖ is measurable for ∀n and

lim
n→∞

∫
‖fn − f‖ dµ = 0.

Proposition 2.2.1. A Bochner integrable mapping is Bochner measurable.

Remark 2.2.1. 1. A Bochner measurable (resp. integrable) mapping is Gelfand-
Pettis measurable (resp. integrable).

2. A function is Bochner measurable (resp. integrable) if and only if it is
measurable (resp. integrable).

Proposition 2.2.2. A mapping f of a σ-finite complete measure space into
a Banach space is Bochner measurable if and only if there exists a sequence
(fn)∞n=1 of Bochner integrable simple mappings such that limn→∞ fn = f a.e.

Proposition 2.2.3. A mapping f of a σ-finite complete measure space into
a Banach space is Bochner measurable if there exists a sequence (fn)∞n=1 of
Bochner measurable mappings such that limn→∞ fn = f a.e.

Theorem 2.2.1 (Pettis Measurability Theorem). A Gelfand-Pettis measurable
mapping f of a σ-finite complete measure space into a Banach space is Bochner
measurable if and only if there exists a null set N such that f(X\N) is separable.

Proposition 2.2.4. A continuous mapping of the completion of a σ-finite Borel
measure space on a separable locally compact Hausdorff space into a Banach
space is Bochner measurable.

Proposition 2.2.5.

‖
∫
f dµ‖ ≤

∫
‖f‖ dµ

for a Bochner integrable mapping ∀f .

Proposition 2.2.6. A Bochner measurable mapping is Bochner integrable if
and only if the norm is integrable.

Definition 2.2.3. We denote the vector space of equivalence classes of elements
of the vector space of Bochner measurable mappings by M(µ,A).

Remark 2.2.2. M(µ,A) is a complex algebra (resp. ∗-algebra) if A is a Banach
algebra (resp. Banach ∗-algebra).
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Proposition 2.2.7.

Lp(µ,A) =

{
f ∈M(µ,A) : ‖f‖p = (

∫
‖f‖p dµ)1/p <∞

}
is a Banach space for 1 ≤ ∀p <∞.

Remark 2.2.3. Lp(µ,C) = Lp(µ) for 1 ≤ ∀p <∞.

Proposition 2.2.8. Suppose that H is a Hilbert space.

1. L2(µ,H) is a Hilbert space with respect to the inner product

(f, g) =

∫
(f(x), g(x))µ(dx).

2. L2(µ,H) ' L2(µ)⊗H.

Proposition 2.2.9. Suppose that µ is σ-finite.

L∞(µ,A) =

{
f ∈M(µ,A) : ‖f‖∞ = min{m : ‖f‖ ≤ m }

= min
µ(N)=0

sup
x∈X\N

‖f(x)‖ <∞
}

is a Banach space.

Remark 2.2.4. 1. L∞(µ,C) = L∞(µ).

2. L∞(µ,A) is a Banach algebra (resp. Banach ∗-algebra) if A is a Banach
algebra (resp. Banach ∗-algebra).

3. L∞(µ,A) is a C∗-algebra if A is a C∗-algebra.

2.3 Vector Measures

Definition 2.3.1. A mapping of a σ-algebra into a locally convex space is called
a vector measure if it is countably additive.

Proposition 2.3.1. The composition of a continuous linear functional and a
vector measure is a complex measure.

2.4 Complex Analysis

Definition 2.4.1. A mapping f of an open set U of a complex (resp. real)
normed vector space X into a complex (resp. real) topological vector space Y
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is said to be differentiable at a point x0 of U if there exists a continuous linear
mapping f (1)(x0) of X into Y such that

lim
n→∞

f(xn)− f(x0)− f (1)(x0)(xn − x0)

‖xn − x0‖
= 0 (2.1)

for a sequence ∀(xn)∞n=1 of U \ {x0} such that limn→∞ xn = x0. In this case f
is continuous at x0 and f (1)(x0) is unique.

Proposition 2.4.1. A mapping f of an open set U of C (resp. R) into a
complex (resp. real) topological vector space is differentiable at a point x0 of U
if and only if

lim
x→x0

f(x)− f(x0)

x− x0
(2.2)

exists. In this case

f (1)(x0) = lim
x→x0

f(x)− f(x0)

x− x0
. (2.3)

Proposition 2.4.2. fg is differentiable at x0 and

(fg)(1)(x0) = f (1)(x0)g(x0) + f(x0)g(1)(x0)

for mappings ∀f and ∀g of an open set U of C (resp. R) into a normed algebra
differentiable at a point x0 of U .

Proposition 2.4.3. (f, g) is differentiable at x0 and

(f, g)(1)(x0) = (f (1)(x0), g(x0)) + (f(x0), g(1)(x0))

for mappings ∀f and ∀g of an open set U of R into a Hilbert space differentiable
at a point x0 of U .

Definition 2.4.2. A mapping of an open set U of C into a complex topological
vector space is said to be holomorphic if it is differentiable at ∀z of U .

Theorem 2.4.1. Suppose that f is a mapping of an open set U of C into a
complex Banach space A. The following are equivalent.

1. f is holomorphic.

2. Suppose that z0 is a point of U . There exist R > 0 and a sequence (an)∞n=1

of A such that

f(z) = lim
n→∞

n∑
k=0

(z − z0)kak (2.4)

for ∀z of B(z0, R).

3. σ ◦ f is holomorphic for a bounded linear functional ∀σ on A.

In this case (σ ◦ f)(n) = σ ◦ f (n) for a bounded linear functional ∀σ on A and
for ∀n = 0, 1, . . . .

10



Theorem 2.4.2. A mapping f of an open set U into the dual space of a complex
Banach space such that f(·)(σ) is holomorphic for ∀σ is holomorphic.

Theorem 2.4.3. Suppose that f is a holomorphic mapping of the open disk of
radius R > 0 centered at a point z0 of C into a complex Banach space.

∞∑
n=0

|z − z0|n

n!
‖f (n)(z0)‖ <∞ (2.5)

and

f(z) =

∞∑
n=0

(z − z0)n

n!
f (n)(z0) (2.6)

for ∀z of B(z0, R).

Proposition 2.4.4. Suppose that f is a continuous mapping of the image of a
piecewise continuously differentiable curve C of the complex plane into a complex
Banach space A. There exists a unique∫

C

f(z) dz (2.7)

of A such that

σ

∫
C

f(z) dz =

∫
C

(σ ◦ f)(z) dz (2.8)

for a bounded linear functional ∀σ on A.

Theorem 2.4.4 (Phragmén-Lindelöf). Suppose that

D =

{
z ∈ C : −π

2
< Im z <

π

2

}
(2.9)

and that f is a mapping into a Banach space continuous on D holomorphic on
D.

sup
z∈D
‖f(z)‖ = sup

z∈∂D
‖f(z)‖ (2.10)

if there exists 0 ≤ C < 1 such that

sup
z∈D

‖f(z)‖
exp(cosh(C Re z))

<∞. (2.11)

Theorem 2.4.5. Suppose that f is a mapping into a Banach space bounded
continuous on R× [0, 1] holomorphic on R× (0, 1).

sup
Im z=y

‖f(z)‖ ≤ ( sup
Im z=0

‖f(z)‖)1−y( sup
Im z=1

‖f(z)‖)y ≤ sup
Im z=0,1

‖f(z)‖

for 0 ≤ ∀y ≤ 1.
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Corollary 2.4.1. Suppose that f is a mapping into a Banach space bounded
continuous on R× [0, 1] holomorphic on R× (0, 1).

sup
0<Im z<1

‖f(z)‖ = sup
Im z=0,1

‖f(z)‖.

Corollary 2.4.2. Suppose that f is a mapping into a Banach space bounded
continuous on R× [0, 1] holomorphic on R× (0, 1). If

sup
Im z=0

‖f(z)‖ = 0

then f = 0.
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