Differential Equations

Yasushi Ikeda

November 27, 2022

Suppose that f is a continuous mapping of an open set U of \mathbb{R}^{n+1} into \mathbb{R}^{n}. And we suppose that each point $\left(t_{0}, x_{0}\right)$ of U has a neighborhood V contained in U such that there exists a function φ of class C^{1} on the open set

$$
W=\left\{(t, x, y) \in \mathbb{R}^{2 n+1}:(t, x),(t, y) \in V\right\}
$$

satisfying the following.

1. The equation

$$
\varphi(t, x, x)=0
$$

holds for each point (t, x) of V and the relation

$$
\varphi(t, x, y)>0
$$

holds provided that $x \neq y$ for each point (t, x, y) of W.
2. The relation

$$
\frac{\partial \varphi(t, x, y)}{\partial t}+\frac{\partial \varphi(t, x, y)}{\partial x} f(t, x)+\frac{\partial \varphi(t, x, y)}{\partial y} f(t, y) \leq 0
$$

holds for each point (t, x, y) of W.
Suppose that $\left(t_{0}, x_{0}\right)$ is a point of U. A partially ordered set consisting of x that is a differentiable mapping of an open subinterval of $\left[t_{0}, \infty\right)$ containing t_{0} into \mathbb{R}^{n} such that $x\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

for each t is a totally ordered set and has a maximum x [1, Section 2.6]. Suppose that Δ is a compact subset of U. Then the point $(t, x(t))$ belongs to $U \backslash \Delta$ eventually [1, Section 2.6].

Suppose that f is a continuous mapping of $\left[x_{0}, x_{1}\right]$ into \mathbb{R}^{n}. Then we have

$$
\left\|\int_{x_{0}}^{x_{1}} f(x) d x\right\| \leq \int_{x_{0}}^{x_{1}}\|f(x)\| d x
$$

Suppose that f is a C^{1} mapping of an open set U of \mathbb{R}^{n} into \mathbb{R}^{n}. Suppose that x_{0} and x_{1} are points of U such that $x_{0} x_{1}$ is a subset of U. Then we have

$$
\left\|f\left(x_{1}\right)-f\left(x_{0}\right)\right\| \leq\left(\max _{x \in x_{0} x_{1}}\left\|f_{*}(x)\right\|\right)\left\|x_{1}-x_{0}\right\| .
$$

Proof. The mapping $g(t)=f\left(t x_{1}+(1-t) x_{0}\right)$ is of class C^{1} on $[0,1]$. We have

$$
\begin{aligned}
f\left(x_{1}\right)-f\left(x_{0}\right) & =g(1)-g(0) \\
& =\int_{0}^{1} \frac{d g(t)}{d t} d t \\
& =\int_{0}^{1} f_{*}\left(t x_{1}+(1-t) x_{0}\right)\left(x_{1}-x_{0}\right) d t
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left\|f\left(x_{1}\right)-f\left(x_{0}\right)\right\| & \leq \int_{0}^{1}\left\|f_{*}\left(t x_{1}+(1-t) x_{0}\right)\left(x_{1}-x_{0}\right)\right\| d t \\
& \leq\left(\max _{x \in x_{0} x_{1}}\left\|f_{*}(x)\right\|\right)\left\|x_{1}-x_{0}\right\|
\end{aligned}
$$

Suppose that X and Y are topological spaces. We denote the set of continuous mappings of X into Y by $C(X, Y)$.

Suppose that $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. We denote $C(X, \mathbb{F})$ by $C(X)$. Then $C(X)^{d}=$ $C\left(X, \mathbb{F}^{d}\right)$ is a vector space over \mathbb{F}.

Suppose that X is a compact space. Then $C(X)^{d}$ is a Banach space over \mathbb{F} with respect to the norm

$$
\|f\|=\sup _{x \in X}\|f(x)\|
$$

The uniform space $C(X)^{d}$ is a closed subspace of the uniform space $\left(\mathbb{F}^{d}\right)^{X}$ with respect to the uniformity of uniform convergence. The sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of $C(X)^{d}$ has a uniformly convergent subsequence if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is equicontinuous and pointwise bounded (Arzelà-Ascoli).

Suppose that f is a bounded continuous mapping of

$$
R=\left[t_{0}, t_{0}+\delta\right] \times\left\{x \in \mathbb{R}^{d}:\left\|x-x_{0}\right\| \leq \varepsilon\right\}
$$

into \mathbb{R}^{d} such that

$$
\left(\sup _{(t, x) \in R}\|f(t, x)\|\right) \delta \leq \varepsilon
$$

We define

$$
\|f\|=\sup _{(t, x) \in R}\|f(t, x)\|
$$

Suppose that $t_{0}<t_{1}<\cdots<t_{n}=t_{0}+\delta$. We define

$$
x_{k}=x_{k-1}+f\left(t_{k-1}, x_{k-1}\right)\left(t_{k}-t_{k-1}\right)
$$

for each k. Then the points $\left(t_{0}, x_{0}\right),\left(t_{1}, x_{1}\right), \ldots,\left(t_{n}, x_{n}\right)$ belong to R. We define x to be the unique function whose graph is $\left(t_{0}, x_{0}\right) \cdots\left(t_{n}, x_{n}\right)$. Since

$$
\begin{array}{r}
\max _{k} \sup _{(t, x) \in\left(t_{k-1}, x_{k-1}\right)\left(t_{k}, x_{k}\right)}\left\|(t, x)-\left(t_{k-1}, x_{k-1}\right)\right\| \\
\leq \max _{k} \sup _{(t, x) \in\left(t_{k-1}, x_{k-1}\right)\left(t_{k}, x_{k}\right)} \sqrt{1+\|f\|^{2}}\left(t-t_{k-1}\right) \\
\leq \sqrt{1+\|f\|^{2}} \max _{k}\left(t_{k}-t_{k-1}\right)
\end{array}
$$

and f is uniformly continuous on R, we have

$$
\begin{equation*}
\lim _{\max _{k}\left(t_{k}-t_{k-1}\right) \rightarrow 0} \max _{k} \sup _{(t, x) \in\left(t_{k-1}, x_{k-1}\right)\left(t_{k}, x_{k}\right)}\left\|f(t, x)-f\left(t_{k-1}, x_{k-1}\right)\right\|=0 \tag{1}
\end{equation*}
$$

We define

$$
\begin{aligned}
r & =\max _{k} \sup _{(t, x) \in\left(t_{k-1}, x_{k-1}\right)\left(t_{k}, x_{k}\right)}\left\|f(t, x)-f\left(t_{k-1}, x_{k-1}\right)\right\| \\
& =\max _{k} \sup _{t \in\left[t_{k-1}, t_{k}\right]}\left\|f(t, x(t))-\frac{d x(t)}{d t}\right\|
\end{aligned}
$$

Then we have

$$
\left\|\int_{t_{0}}^{t} f(t, x(t)) d t-x(t)+x_{0}\right\| \leq r\left(t-t_{0}\right)
$$

There exists a C^{1} mapping x of $\left[t_{0}, t_{0}+\delta\right]$ into

$$
\left\{x \in \mathbb{R}^{d}:\left\|x-x_{0}\right\| \leq \varepsilon\right\}
$$

such that $x\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x}{d t}=f(t, x)
$$

on $\left[t_{0}, t_{0}+\delta\right]$.
Proof. We define

$$
t_{0}<\cdots<t_{k}=t_{0}+\frac{k \delta}{n}<\cdots<t_{n}=t_{0}+\delta
$$

Then we have

$$
\lim _{n \rightarrow \infty} \max _{k}\left(t_{k}-t_{k-1}\right)=0
$$

We define

$$
r_{n}=\max _{k} \sup _{(t, x) \in\left(t_{k-1}, x_{k-1}\right)\left(t_{k}, x_{k}\right)}\left\|f(t, x)-f\left(t_{k-1}, x_{k-1}\right)\right\| .
$$

By the equation (1), we have $\lim _{n \rightarrow \infty} r_{n}=0$. We denote the unique function whose graph is $\left(t_{0}, x_{0}\right) \cdots\left(t_{n}, x_{n}\right)$ by x_{n}. Then we have

$$
\left\|\int_{t_{0}}^{t} f\left(t, x_{n}(t)\right) d t-x_{n}(t)+x_{0}\right\| \leq r_{n}\left(t-t_{0}\right)
$$

The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is uniformly bounded and uniformly equicontinuous since

$$
\left\|x_{n}\left(\tau_{1}\right)-x_{n}\left(\tau_{2}\right)\right\| \leq\|f\|\left|\tau_{1}-\tau_{2}\right|
$$

for each τ_{1} and τ_{2}. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a uniformly convergent subsequence by the Arzelà-Ascoli theorem. We denote the subsequence again by $\left\{x_{n}\right\}_{n=1}^{\infty}$. We define $x=\lim _{n \rightarrow \infty} x_{n}$. We have

$$
\lim _{n \rightarrow \infty} \int_{t_{0}}^{t} f\left(t, x_{n}(t)\right) d t=\int_{t_{0}}^{t} f(t, x(t)) d t
$$

by the bounded convergence theorem. We have

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(t, x(t)) d t
$$

and

$$
x\left(t_{0}\right)=x_{0}, \quad \frac{d x(t)}{d t}=f(t, x(t))
$$

Suppose that A is a nonempty subset of a metric space X. Then we have

$$
\left|\operatorname{dist}\left(x_{1}, A\right)-\operatorname{dist}\left(x_{2}, A\right)\right| \leq \operatorname{dist}\left(x_{1}, x_{2}\right)
$$

for each $\left(x_{1}, x_{2}\right)$ and the mapping $x \mapsto \operatorname{dist}(x, A)$ is uniformly continuous.
Proof. Since we have

$$
\operatorname{dist}\left(x_{1}, A\right)-\operatorname{dist}\left(x_{2}, a\right) \leq \operatorname{dist}\left(x_{1}, a\right)-\operatorname{dist}\left(x_{2}, a\right) \leq \operatorname{dist}\left(x_{1}, x_{2}\right)
$$

for each point a of A, we have

$$
\operatorname{dist}\left(x_{1}, A\right)-\operatorname{dist}\left(x_{2}, A\right)=\sup _{a \in A}\left(\operatorname{dist}\left(x_{1}, A\right)-\operatorname{dist}\left(x_{2}, a\right)\right) \leq \operatorname{dist}\left(x_{1}, x_{2}\right)
$$

Therefore, we have

$$
\left|\operatorname{dist}\left(x_{1}, A\right)-\operatorname{dist}\left(x_{2}, A\right)\right| \leq \operatorname{dist}\left(x_{1}, x_{2}\right)
$$

and the mapping $x \mapsto \operatorname{dist}(x, A)$ is uniformly continuous.
Suppose that U is an open set of a metric space X. Suppose that C is a compact subset of U. Then there exists $\delta>0$ such that

$$
C_{\delta}=\{x \in X: \operatorname{dist}(C, x)<\delta\}
$$

is a subset of U.
Proof. We may assume that C and $X \backslash U$ are nonempty. Then we have

$$
\delta=\operatorname{dist}(C, X \backslash U)=\min _{x \in C} \operatorname{dist}(x, X \backslash U)>0
$$

and C_{δ} is a subset of U.
Suppose that f is a bounded continuous mapping of $[0,1] \times \mathbb{R}^{d}$ into \mathbb{R}^{d}. Suppose that x is a C^{1} function on a subinterval of $[0,1]$ containing a neighborhood of 0 such that $x(0)=0$ and

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

on $\operatorname{dom} x$. Then the solution x can be extended to the whole interval $[0,1]$ [1, Section 5.2]. We define

$$
\begin{aligned}
& S^{(0)}=\left\{x^{(0)}: x^{(0)} \text { is a } C^{1} \text { function on }[0,1]\right. \text { such that } \\
& \left.\qquad x^{(0)}(0)=0 \text { and } \frac{d x^{(0)}(t)}{d t}=f\left(t, x^{(0)}(t)\right) \text { on }[0,1]\right\} .
\end{aligned}
$$

and $C_{x^{(0)}}$ to be the graph of $x^{(0)}$ for each element $x^{(0)}$ of $S^{(0)}$. Then the set

$$
C=\bigcup_{x^{(0)} \in S^{(0)}} C_{x^{(0)}}
$$

is closed [1, Section 5.3].
Suppose that f is a bounded continuous mapping of $\mathbb{R} \times \mathbb{R}^{d}$ into \mathbb{R}^{d}. We define

$$
\begin{aligned}
& S^{\left(t_{0}, x_{0}\right)}=\left\{x: x \text { is a } C^{1} \text { function on }\left[t_{0}, 1\right]\right. \text { such that } \\
& \left.\qquad x\left(t_{0}\right)=x_{0} \text { and } \frac{d x(t)}{d t}=f(t, x(t)) \text { on }\left[t_{0}, 1\right]\right\}
\end{aligned}
$$

for each point $\left(t_{0}, x_{0}\right)$ of $(-\infty, 1) \times \mathbb{R}^{d}$. We assume that C is bounded (thus compact) and let $\varepsilon>0$. Then there exists $\delta>0$ such that [there exists an element $x^{(0)}$ of $S^{(0)}$ such that

$$
\left.\max \left\{\operatorname{dist}\left(C_{x^{(0)}},(t, x(t))\right): t_{0} \leq t \leq 1\right\}<\varepsilon\right]
$$

for each point $\left(t_{0}, x_{0}\right)$ of $(-\infty, 1) \times \mathbb{R}^{d}$ and each element x of $S^{\left(t_{0}, x_{0}\right)}$ such that $\operatorname{dist}\left(C,\left(t_{0}, x_{0}\right)\right)<\delta$.

Proof. Suppose contrary. We may assume that $t_{n}<1$ and x_{n} is an element of $S^{\left(t_{n}, x_{n}\left(t_{n}\right)\right)}$ for each n and the following.

1. We have

$$
1>\operatorname{dist}\left(C,\left(t_{n}, x_{n}\left(t_{n}\right)\right)\right) \rightarrow 0
$$

2. Suppose that $x^{(0)}$ is an element of $S^{(0)}$. Then we have

$$
\inf _{n} \max \left\{\operatorname{dist}\left(C_{x^{(0)}},\left(t, x_{n}(t)\right)\right): t_{n} \leq t \leq 1\right\} \geq \varepsilon
$$

We may assume that x_{n} belongs to $S^{\left(-1, x_{n}(-1)\right)}$ for each n. Then we have

$$
x_{n}(t)=x_{n}\left(t_{n}\right)+\int_{t_{n}}^{t} f\left(t, x_{n}(t)\right) d t
$$

on $[-1,1]$ for each n and the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is uniformly bounded on $[-1,1]$. The sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is uniformly equicontinuous on $[-1,1]$ since

$$
\left\|x_{n}\left(\tau_{2}\right)-x_{n}\left(\tau_{1}\right)\right\|=\left\|\int_{\tau_{1}}^{\tau_{2}} f\left(t, x_{n}(t)\right) d t\right\| \leq\|f\|\left|\tau_{2}-\tau_{1}\right|
$$

We may assume that $\lim _{n \rightarrow \infty} x_{n}=x$ uniformly by the Arzelà-Ascoli theorem and $\lim _{n \rightarrow \infty} t_{n}=t_{0}$. Then we have

$$
\begin{aligned}
x(t) & =\lim _{n \rightarrow \infty} x_{n}(t) \\
& =\lim _{n \rightarrow \infty}\left(x_{n}(0)+\int_{0}^{t} f\left(t, x_{n}(t)\right) d t\right) \\
& =x(0)+\int_{0}^{t} f(t, x(t)) d t
\end{aligned}
$$

on $[-1,1]$ and x belongs to $S^{(-1, x(-1))}$. The point $\left(t_{0}, x\left(t_{0}\right)\right)$ belongs to C since

$$
x\left(t_{0}\right)=\lim _{n \rightarrow \infty}\left(x_{n}\left(t_{n}\right)-x\left(t_{n}\right)+x\left(t_{n}\right)\right)=\lim _{n \rightarrow \infty} x_{n}\left(t_{n}\right)
$$

and

$$
\operatorname{dist}\left(C,\left(t_{0}, x\left(t_{0}\right)\right)\right)=\lim _{n \rightarrow \infty} \operatorname{dist}\left(C,\left(t_{n}, x_{n}\left(t_{n}\right)\right)\right)=0
$$

There exists an element $x^{(0)}$ of $S^{(0)}$ such that $x^{(0)}=x$ on $\left[t_{0}, 1\right]$. Then we have

$$
\inf _{n} \max \left\{\operatorname{dist}\left(C_{x^{(0)}},\left(t, x_{n}(t)\right)\right): t_{n} \leq t \leq 1\right\} \geq \varepsilon
$$

This is a contradiction.
Suppose that f is a continuous mapping of a neighborhood U of the origin $(0,0)$ of $\mathbb{R} \times \mathbb{R}^{d}$ into \mathbb{R}^{d} and we assume the following.

1. Any C^{1} function $x^{(0)}$ on a subinterval dom $x^{(0)}$ of $[0,1]$ containing a neighborhood of 0 such that $x^{(0)}(0)=0$ and

$$
\frac{d x^{(0)}(t)}{d t}=f\left(t, x^{(0)}(t)\right)
$$

on $\operatorname{dom} x^{(0)}$ extends to an element of $S^{(0)}$.
2. The closure of the set

$$
C=\bigcup_{x^{(0)} \in S^{(0)}} C_{x^{(0)}}
$$

is a compact subset of U.
Then the set C is closed and [there exists $\delta>0$ satisfying the following] for any $\varepsilon>0$.

1. The set

$$
C_{\delta}=\{(t, x): \operatorname{dist}(C,(t, x))<\delta\}
$$

is contained in U.
2. Suppose that $\left(t_{0}, x_{0}\right)$ is a point of $C_{\delta} \cap\left((-\infty, 1) \times \mathbb{R}^{d}\right)$. Then any C^{1} function x on a subinterval $\operatorname{dom} x$ of $\left[t_{0}, 1\right]$ containing a neighborhood of t_{0} such that $x\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

on $\operatorname{dom} x$ extends to an element of $S^{\left(t_{0}, x_{0}\right)}$ and there exists an element $x^{(0)}$ of $S^{(0)}$ such that

$$
\max \left\{\operatorname{dist}\left(C_{x^{(0)}},(t, x(t))\right): t_{0} \leq t \leq 1\right\}<\varepsilon
$$

Proof. There exists a compact subset Δ of U such that the closure of C is contained in the interior of Δ. Then there exists a bounded continuous mapping \tilde{f} of $\mathbb{R} \times \mathbb{R}^{d}$ into \mathbb{R}^{d} such that $\tilde{f}=f$ on Δ by the Tietze extension theorem. We define $\tilde{S}^{\left(t_{0}, x_{0}\right)}$ and \tilde{C} related to \tilde{f} in the same manner. Then the set $S^{(0)}$ is contained in $\tilde{S}^{(0)}$ and \tilde{C} is a closed set containing C. Suppose that x is an element of $\tilde{S}^{(0)}$ and we assume that the compact set

$$
(\partial \Delta)^{-1}=\{t:(t, x(t)) \in \partial \Delta\}
$$

is nonempty. We define $t_{0}=\min (\partial \Delta)^{-1}>0$. Then the connected space $\left[0, t_{0}\right)$ is a subset of

$$
(\operatorname{Int} \Delta)^{-1}=\{t:(t, x(t)) \in \operatorname{Int} \Delta\}
$$

The restriction of the function x to $\left[0, t_{0}\right]$ extends to an element of $S^{(0)}$. This is a contradiction and the function x belongs to $S^{(0)}$. Then we have $S^{(0)}=\tilde{S}^{(0)}$ and the set $C=\tilde{C}$ is closed (thus compact).

We may assume that

$$
C_{\varepsilon}=\{(t, x): \operatorname{dist}(C,(t, x))<\varepsilon\}
$$

is contained in the interior of Δ. There exists $\delta>0$ such that [there exists an element $x^{(0)}$ of $S^{(0)}$ such that

$$
\left.\max \left\{\operatorname{dist}\left(C_{x^{(0)}},(t, x(t))\right): t_{0} \leq t \leq 1\right\}<\varepsilon\right]
$$

for each point $\left(t_{0}, x_{0}\right)$ of $(-\infty, 1) \times \mathbb{R}^{d}$ and each element x of $\tilde{S}^{\left(t_{0}, x_{0}\right)}$ such that $\operatorname{dist}\left(C,\left(t_{0}, x_{0}\right)\right)<\delta$. We may assume that

$$
C_{\delta}=\{(t, x): \operatorname{dist}(C,(t, x))<\delta\}
$$

is contained in the interior of Δ. Suppose that $\left(t_{0}, x_{0}\right)$ is a point of $C_{\delta} \cap$ $\left((-\infty, 1) \times \mathbb{R}^{d}\right)$. We take any C^{1} function x on a subinterval dom x of $\left[t_{0}, 1\right]$ containing a neighborhood of t_{0} such that $x\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

on $\operatorname{dom} x$. Suppose that

$$
(\partial \Delta)^{-1}=\{t:(t, x(t)) \in \partial \Delta\}
$$

is nonempty. We define $t_{1}=\min (\partial \Delta)^{-1}>t_{0}$. Then the connected space $\left[t_{0}, t_{1}\right)$ is a subset of

$$
(\operatorname{Int} \Delta)^{-1}=\{t:(t, x(t)) \in \operatorname{Int} \Delta\}
$$

Then there exists an element $x^{(0)}$ of $S^{(0)}$ such that

$$
\max \left\{\operatorname{dist}\left(C_{x^{(0)}},(t, x(t))\right): t_{0} \leq t \leq t_{1}\right\}<\varepsilon
$$

The point $\left(t_{1}, x\left(t_{1}\right)\right)$ belongs to the interior of Δ. This is a contradiction and the function x extends to an element of $\tilde{S}^{\left(t_{0}, x_{0}\right)}$. There exists an element $x^{(0)}$ of $S^{(0)}$ such that

$$
\max \left\{\operatorname{dist}\left(C_{x^{(0)}},(t, x(t))\right): t_{0} \leq t \leq 1\right\}<\varepsilon
$$

This means that the function x belongs to $S^{\left(t_{0}, x_{0}\right)}$.
Suppose that f is a continuous mapping of a neighborhood U of the origin $(0,0)$ of $\mathbb{R} \times \mathbb{R}^{d}$ into \mathbb{R}^{d} and we assume the following.

1. Any C^{1} function $x^{(0)}$ on a subinterval $\operatorname{dom} x^{(0)}$ of $[0,1]$ containing a neighborhood of 0 such that $x^{(0)}(0)=0$ and

$$
\frac{d x^{(0)}(t)}{d t}=f\left(t, x^{(0)}(t)\right)
$$

on dom $x^{(0)}$ extends to an element of $S^{(0)}$.
2. The closure of the set

$$
C=\bigcup_{x^{(0)} \in S^{(0)}} C_{x^{(0)}}
$$

is a compact subset of U.
Then the set C is closed. Suppose that U_{0} is a neighborhood of C. Then there exists a neighborhood V_{0} of C satisfying [the following for each point $\left(t_{0}, x_{0}\right)$ of $\left.V_{0} \cap(-\infty, 1) \times \mathbb{R}^{d}\right]$.

1. Any solution for the Cauchy problem

$$
x\left(t_{0}\right)=x_{0}, \quad \frac{d x(t)}{d t}=f(t, x(t)), \quad(t, x(t)) \in U
$$

can be extended to $\left[t_{0}, 1\right]$.
2. The graph of any such extension to $\left[t_{0}, 1\right]$ is contained in U_{0}.

Suppose that f is a continuous mapping of an open set U of $\mathbb{R} \times \mathbb{R}^{d}$ into \mathbb{R}^{d} and we assume that [there exists $\delta>0$ such that there exists a unique C^{1} function x such that $x\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

on $\left.\left(t_{0}-\delta, t_{0}+\delta\right)\right]$ for each point $\left(t_{0}, x_{0}\right)$ of U.
Suppose that $x^{(1)}$ and $x^{(2)}$ are C^{1} functions on open intervals containing t_{0} such that $x^{(i)}\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x^{(i)}}{d t}=f\left(t, x^{(i)}\right)
$$

Then we have $x^{(1)}=x^{(2)}$ on $\operatorname{dom} x^{(1)} \cap \operatorname{dom} x^{(2)}$. A partially ordered set consisting of x that is a C^{1} mapping on an open interval containing t_{0} such that $x\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x}{d t}=f(t, x)
$$

has a maximum $x\left[t_{0}, x_{0}\right]$.
Suppose that $x^{(0)}$ is a C^{1} function on $\left[t_{1}, t_{2}\right]$ such that

$$
\frac{d x^{(0)}}{d t}=f\left(t, x^{(0)}\right)
$$

Then there exists a neighborhood V of $C^{(0)}$ such that [dom $x\left[t_{0}, x_{0}\right]$ contains [$\left.t_{1}, t_{2}\right]$ for each point $\left(t_{0}, x_{0}\right)$ of $\left.V\right]$.

The function $x\left(t, t_{0}, x_{0}\right)=x\left[t_{0}, x_{0}\right](t)$ is continuous on the open set dom x.
Proof. We define $x^{(0)}=x[0,0]$. Suppose that $t_{1} \geq 0$ is a point of $\operatorname{dom} x^{(0)}$. Then there exists $\delta_{0}>0$ such that $\left[-\delta_{0}, t_{1}+\delta_{0}\right]$ is contained in dom $x^{(0)}$. We define

$$
M=\max \left\{\left\|\frac{d x^{(0)}(t)}{d t}\right\|:-\delta_{0} \leq t \leq t_{1}+\delta_{0}\right\}<\infty
$$

We denote the graph of $x^{(0)}$ on $\left[-\delta_{0}, t_{1}+\delta_{0}\right]$ by $C^{(0)}$. Suppose that $\varepsilon>0$. Then there exists $\delta>0$ such that $x=x\left[t_{0}, x_{0}\right]$ is defined on $\left[-\delta_{0}, t_{1}+\delta_{0}\right]$ and

$$
\max \left\{\operatorname{dist}\left(C^{(0)},\left(t, x\left(t, t_{0}, x_{0}\right)\right)\right):-\delta_{0} \leq t \leq t_{1}+\delta_{0}\right\}<\varepsilon
$$

for each point $\left(t_{0}, x_{0}\right)$ of $C_{\delta}^{(0)}$. We may assume that $\delta \leq \delta_{0}$. Suppose that $\left\|\left(t_{0}, x_{0}\right)\right\|<\delta$. Then we have

$$
\max \left\{\operatorname{dist}\left(C^{(0)},\left(t, x\left(t, t_{0}, x_{0}\right)\right)\right):-\delta_{0} \leq t \leq t_{1}+\delta_{0}\right\}<\varepsilon
$$

Suppose that $\left|t-t_{1}\right|<\delta$. Then we have

$$
\operatorname{dist}\left(C^{(0)},\left(t, x\left(t, t_{0}, x_{0}\right)\right)\right)<\varepsilon
$$

There exists a point t_{2} of $\left[-\delta_{0}, t_{1}+\delta_{0}\right]$ such that

$$
\left\|\left(t_{2}, x^{(0)}\left(t_{2}\right)\right)-\left(t, x\left(t, t_{0}, x_{0}\right)\right)\right\|<\varepsilon .
$$

Then we have

$$
\begin{aligned}
\left\|x\left(t, t_{0}, x_{0}\right)-x\left(t_{1}, 0,0\right)\right\| & \leq\left\|x\left(t, t_{0}, x_{0}\right)-x^{(0)}\left(t_{2}\right)\right\|+\left\|x^{(0)}\left(t_{2}\right)-x^{(0)}\left(t_{1}\right)\right\| \\
& <\varepsilon+M(\varepsilon+\delta) \\
& \leq(2 M+1) \varepsilon .
\end{aligned}
$$

Suppose that $x^{(0)}$ is a C^{1} function on $\left[0, t_{1}\right]$ and we define $C^{(0)}$ to be the graph of $x^{(0)}$. Suppose that V is a neighborhood of $C^{(0)}$ and φ is a C^{1} function on the open set

$$
W=\{(t, x, y):(t, x),(t, y) \in V\}
$$

such that the equation

$$
\varphi(t, x, x)=0
$$

holds for each point (t, x) of V and the relation

$$
\varphi(t, x, y)>0
$$

holds provided that $x \neq y$ for each point (t, x, y) of W. Then there exists $\delta>0$ satisfying the following. Suppose that f is a continuous function on V such that

$$
\frac{\partial \varphi(t, x, y)}{\partial t}+\frac{\partial \varphi(t, x, y)}{\partial x} f(t, x)+\frac{\partial \varphi(t, x, y)}{\partial y} f(t, y) \leq 0
$$

holds for each point (t, x, y) of W and

$$
\int_{0}^{t_{1}}\left\|\frac{d x^{(0)}(t)}{d t}-f\left(t, x^{(0)}(t)\right)\right\| d t<\delta
$$

Suppose that $\left(t_{0}, x_{0}\right)$ is a point of $C_{\delta}^{(0)} \cap\left[0, t_{1}\right) \times \mathbb{R}^{d}$. Then there exists a C^{1} function x on $\left[t_{0}, t_{1}\right]$ such that $x\left(t_{0}\right)=x_{0}$ and

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

on $\left[t_{0}, t_{1}\right]$.
Proof. There exists a compact subset Δ of V such that the set $C^{(0)}$ is contained in the interior of Δ. There exists $\delta>0$ such that the set

$$
C_{\delta}^{(0)}=\{(t, x): \operatorname{dist}(C,(t, x))<\delta\}
$$

is contained in the interior of Δ. We define

$$
t_{2}=\min \{t:(t, x(t)) \in \partial \Delta\}>t_{0} .
$$

We define

$$
M=\max _{(t, x) \in \Delta \cap\left[0, t_{1}\right] \times \mathbb{R}^{d}}\left\|\frac{\partial \varphi\left(t, x^{(0)}(t), x\right)}{\partial x}\right\|<\infty
$$

Then we have

$$
\begin{aligned}
& \frac{d \varphi\left(t, x^{(0)}(t), x(t)\right)}{d t}=\frac{\partial \varphi\left(t, x^{(0)}(t), x(t)\right)}{\partial t} \\
& \quad+\frac{\partial \varphi\left(t, x^{(0)}(t), x(t)\right)}{\partial x} \frac{d x^{(0)}(t)}{d t}+\frac{\partial \varphi\left(t, x^{(0)}(t), x(t)\right)}{\partial y} \frac{d x(t)}{d t} \\
& \leq \frac{\partial \varphi\left(t, x^{(0)}(t), x(t)\right)}{\partial x}\left(\frac{d x^{(0)}(t)}{d t}-f\left(t, x^{(0)}(t)\right)\right) \\
& \leq M\left\|\frac{d x^{(0)}(t)}{d t}-f\left(t, x^{(0)}(t)\right)\right\|
\end{aligned}
$$

for $t_{0} \leq t \leq t_{3}=\min \left\{t_{1}, t_{2}\right\}$ and

$$
\begin{aligned}
\varphi\left(t_{3}, x^{(0)}\left(t_{3}\right), x\left(t_{3}\right)\right)-\varphi\left(t_{0}, x^{(0)}\left(t_{0}\right), x_{0}\right) & \leq M \int_{t_{0}}^{t_{3}}\left\|\frac{d x^{(0)}(t)}{d t}-f\left(t, x^{(0)}(t)\right)\right\| d t \\
& \leq M \delta
\end{aligned}
$$

We define

$$
\eta=\min _{(t, x) \in \partial \Delta \cap\left[0, t_{1}\right] \times \mathbb{R}^{d}} \varphi\left(t, x^{(0)}(t), x\right)>0
$$

and we may assume that

$$
\varphi\left(t_{0}, x^{(0)}\left(t_{0}\right), x_{0}\right)<\eta-M \delta
$$

for each point $\left(t_{0}, x_{0}\right)$ of $C_{\delta}^{(0)} \cap\left[0, t_{1}\right) \times \mathbb{R}^{d}$.

$$
\begin{aligned}
\eta & \leq \varphi\left(t_{2}, x^{(0)}\left(t_{2}\right), x\left(t_{2}\right)\right) \\
& \leq \varphi\left(t_{0}, x^{(0)}\left(t_{0}\right), x_{0}\right)+M \delta \\
& <\eta
\end{aligned}
$$

provided that $t_{2} \leq t_{1}$. This is a contradiction and we have $t_{2}>t_{1}$.
Suppose that f is a continuous mapping of an open set V of $\mathbb{R} \times \mathbb{R}^{d}$ into \mathbb{R}^{d}. Suppose that x is a C^{1} function on $[0,1]$ such that $x(0)=0$ and

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

on $[0,1]$. We denote the graph of x by C. Suppose that φ is a C^{1} function on the open set

$$
W=\{(t, x, y):(t, x),(t, y) \in V\}
$$

such that the equation

$$
\varphi(t, x, x)=0
$$

holds for each point (t, x) of V and the relation

$$
\varphi(t, x, y)>0
$$

holds provided that $x \neq y$ for each point (t, x, y) of W. Suppose that f_{i} is a net of continuous mappings of V into \mathbb{R}^{d} such that

$$
\frac{\partial \varphi(t, x, y)}{\partial t}+\frac{\partial \varphi(t, x, y)}{\partial x} f_{i}(t, x)+\frac{\partial \varphi(t, x, y)}{\partial y} f_{i}(t, y) \leq 0
$$

holds for each point (t, x, y) of W for each i and we assume that

$$
\lim _{i} \int_{0}^{1}\left\|f(t, x(t))-f_{i}(t, x(t))\right\| d t=0
$$

Then the solution for the Cauchy problem

$$
x_{i}(0)=0, \quad \frac{d x_{i}(t)}{d t}=f_{i}\left(t, x_{i}(t)\right)
$$

is defined on $[0,1]$ eventually and x_{i} converges to x uniformly on $[0,1]$.
Proof. Suppose that $\varepsilon>0$. Then there exists $\delta>0$ such that

$$
\int_{0}^{1}\left\|f(t, x(t))-f_{i}(t, x(t))\right\| d t<\delta
$$

implies that the solution for the Cauchy problem

$$
x_{i}(0)=0, \quad \frac{d x_{i}(t)}{d t}=f_{i}\left(t, x_{i}(t)\right)
$$

is defined on $[0,1]$ and $\left\|x_{i}-x\right\|<\varepsilon$.
Suppose that

$$
x(0)=0, \quad \frac{d x(t)}{d t}=f(t) x(t)+g(t)
$$

is a Cauchy problem of a linear differential equation. Suppose that f_{i} and g_{i} are nets of continuous functions on $[0,1]$ such that $\lim _{i} f_{i}=f$ and $\lim _{i} g_{i}=g$ uniformly on $[0,1]$. Suppose that x_{i} is a solution for the Cauchy problem

$$
x_{i}(0)=0, \quad \frac{d x_{i}(t)}{d t}=f_{i}(t) x_{i}(t)+g_{i}(t)
$$

Then we have $\lim _{i} x_{i}=x$ uniformly on $[0,1]$.

Proof. Since

$$
\left\|f_{i}(t) x+g_{i}(t)-f_{i}(t) y-g_{i}(t)\right\| \leq\left\|f_{i}\right\|\|x-y\|,
$$

the differential equations satisfy the Lipschitz condition. Since

$$
\int_{0}^{1}\left\|f(t) x(t)+g(t)-f_{i}(t) x(t)-g_{i}(t)\right\| d t \leq\left\|f-f_{i}\right\|\|x\|+\left\|g-g_{i}\right\| \rightarrow 0
$$

$\lim _{i} x_{i}=x$ uniformly.
Suppose that f is a C^{1} mapping of an open set U of $\mathbb{R} \times \mathbb{R}^{d}$ into \mathbb{R}^{d}. We define $x=x\left[t_{0}, x_{0}\right]$. Suppose that e is a unit vector and we define $x_{\delta}(t)=$ $x(t, \delta e)=x\left(t, t_{0}, x_{0}+\delta e\right)$. Then the function x_{δ} is defined on each compact subset of dom x eventually and $\lim _{\delta \rightarrow 0} x_{\delta}=x$ compactly on dom x. We define $\delta x=x_{\delta}-x$. Then we have

$$
\begin{aligned}
\frac{d \delta x(t)}{d t} & =f\left(t, x_{\delta}(t)\right)-f(t, x(t)) \\
& =\left(\int_{0}^{1} \frac{\partial f(t, x(t)+\theta \delta x(t))}{\partial x} d \theta\right) \delta x(t)
\end{aligned}
$$

and we have

$$
\frac{\delta x\left(t_{0}\right)}{\delta}=e, \quad \frac{d}{d t} \frac{\delta x(t)}{\delta}=\left(\int_{0}^{1} \frac{\partial f(t, x(t)+\theta \delta x(t))}{\partial x} d \theta\right) \frac{\delta x(t)}{\delta} .
$$

Since

$$
\lim _{\delta \rightarrow 0} \int_{0}^{1} \frac{\partial f(t, x(t)+\theta \delta x(t))}{\partial x} d \theta=\frac{\partial f(t, x(t))}{\partial x}
$$

compactly on $\operatorname{dom} x$, we have

$$
\lim _{\delta \rightarrow 0} \frac{\delta x(t)}{\delta}=\frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial e}
$$

compactly and we have

$$
\frac{\partial x\left(t_{0}, t_{0}, x_{0}\right)}{\partial e}=e, \quad \frac{\partial}{\partial t} \frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial e}=\frac{\partial f\left(t, x\left(t, t_{0}, x_{0}\right)\right)}{\partial x} \frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial e}
$$

The function

$$
\left(t, t_{0}, x_{0}\right) \mapsto \frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial e}
$$

is continuous.
Proof. We have

$$
\lim _{\left(t_{0}, x_{0}\right) \rightarrow 0} x\left[t_{0}, x_{0}\right]=x[0,0]
$$

compactly on $\operatorname{dom} x[0,0]$. We have

$$
\lim _{\left(t_{0}, x_{0}\right) \rightarrow 0} \frac{\partial f\left(t, x\left(t, t_{0}, x_{0}\right)\right)}{\partial x}=\frac{\partial f(t, x(t, 0,0))}{\partial x}
$$

compactly on $\operatorname{dom} x[0,0]$. We have

$$
\lim _{\left(t_{0}, x_{0}\right) \rightarrow 0} \frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial e}=\frac{\partial x(t, 0,0)}{\partial e}
$$

compactly on dom $x[0,0]$.
The function $\left(t, t_{0}, x_{0}\right) \mapsto x\left(t, t_{0}, x_{0}\right)$ is of class C^{1} and

$$
\begin{gathered}
\frac{\partial x\left(t_{0}, t_{0}, x_{0}\right)}{\partial x_{0}}=1, \quad \frac{\partial}{\partial t} \frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial x_{0}}=\frac{\partial f\left(t, x\left(t, t_{0}, x_{0}\right)\right)}{\partial x} \frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial x_{0}} \\
\frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial t_{0}}=-\frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial x_{0}} f\left(t_{0}, x_{0}\right), \quad \frac{\partial x\left(t, t_{0}, x_{0}\right)}{\partial t}=f\left(t, x\left(t, t_{0}, x_{0}\right)\right)
\end{gathered}
$$

Suppose that f is a smooth mapping of an open U of $\mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}$ into \mathbb{R}^{d}. We define $x(t)=x\left(t, t_{0}, x_{0}, c\right)$ by

$$
x\left(t_{0}\right)=x_{0}, \quad \frac{d x(t)}{d t}=f(t, x(t), c)
$$

Then the function $\left(t, t_{0}, x_{0}, c\right) \mapsto x\left(t, t_{0}, x_{0}, c\right)$ is smooth and

$$
\begin{aligned}
& \frac{\partial x\left(t_{0}, t_{0}, x_{0}, c\right)}{\partial x_{0}}=1, \quad \frac{\partial}{\partial t} \frac{\partial x\left(t, t_{0}, x_{0}, c\right)}{\partial x_{0}}=\frac{\partial f\left(t, x\left(t, t_{0}, x_{0}, c\right), c\right)}{\partial x} \frac{\partial x\left(t, t_{0}, x_{0}, c\right)}{\partial x_{0}} \\
& \frac{\partial x\left(t, t_{0}, x_{0}, c\right)}{\partial t_{0}}=-\frac{\partial x\left(t, t_{0}, x_{0}, c\right)}{\partial x_{0}} f\left(t_{0}, x_{0}, c\right) \\
& \frac{\partial x\left(t, t_{0}, x_{0}, c\right)}{\partial t}=f\left(t, x\left(t, t_{0}, x_{0}, c\right), c\right) \\
& \frac{\partial x\left(t_{0}, t_{0}, x_{0}, c\right)}{\partial c}=0 \\
& \frac{\partial}{\partial t} \frac{\partial x\left(t, t_{0}, x_{0}, c\right)}{\partial c}= \frac{\partial f\left(t, x\left(t, t_{0}, x_{0}, c\right), c\right)}{\partial x} \frac{\partial x\left(t, t_{0}, x_{0}, c\right)}{\partial c}+\frac{\partial f\left(t, x\left(t, t_{0}, x_{0}, c\right), c\right)}{\partial c}
\end{aligned}
$$

References

[1] Hiroshi Okamura. Introduction to differential equations (in Japanese). Kawade Shobo, 1950.

