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Suppose that f is a continuous mapping of an open set U of Rn+1 into Rn.
And we suppose that each point (t0, x0) of U has a neighborhood V contained
in U such that there exists a function ϕ of class C1 on the open set

W =
{

(t, x, y) ∈ R2n+1 : (t, x), (t, y) ∈ V
}

satisfying the following.

1. The equation
ϕ(t, x, x) = 0

holds for each point (t, x) of V and the relation

ϕ(t, x, y) > 0

holds provided that x 6= y for each point (t, x, y) of W .

2. The relation

∂ϕ(t, x, y)

∂t
+
∂ϕ(t, x, y)

∂x
f(t, x) +

∂ϕ(t, x, y)

∂y
f(t, y) ≤ 0

holds for each point (t, x, y) of W .

Suppose that (t0, x0) is a point of U . A partially ordered set consisting of x
that is a differentiable mapping of an open subinterval of [t0,∞) containing t0
into Rn such that x(t0) = x0 and

dx(t)

dt
= f

(
t, x(t)

)
for each t is a totally ordered set and has a maximum x [1, Section 2.6]. Suppose
that ∆ is a compact subset of U . Then the point

(
t, x(t)

)
belongs to U \ ∆

eventually [1, Section 2.6].
Suppose that f is a continuous mapping of [x0, x1] into Rn. Then we have

‖
∫ x1

x0

f(x) dx‖ ≤
∫ x1

x0

‖f(x)‖ dx.

Suppose that f is a C1 mapping of an open set U of Rn into Rn. Suppose
that x0 and x1 are points of U such that x0x1 is a subset of U . Then we have

‖f(x1)− f(x0)‖ ≤ ( max
x∈x0x1

‖f∗(x)‖)‖x1 − x0‖.
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Proof. The mapping g(t) = f
(
tx1 + (1− t)x0

)
is of class C1 on [0, 1]. We have

f(x1)− f(x0) = g(1)− g(0)

=

∫ 1

0

dg(t)

dt
dt

=

∫ 1

0

f∗
(
tx1 + (1− t)x0

)
(x1 − x0) dt.

Therefore, we have

‖f(x1)− f(x0)‖ ≤
∫ 1

0

‖f∗
(
tx1 + (1− t)x0

)
(x1 − x0)‖ dt

≤ ( max
x∈x0x1

‖f∗(x)‖)‖x1 − x0‖.

Suppose that X and Y are topological spaces. We denote the set of contin-
uous mappings of X into Y by C(X,Y ).

Suppose that F = R or C. We denote C(X,F) by C(X). Then C(X)d =
C(X,Fd) is a vector space over F.

Suppose that X is a compact space. Then C(X)d is a Banach space over F
with respect to the norm

‖f‖ = sup
x∈X
‖f(x)‖.

The uniform space C(X)d is a closed subspace of the uniform space (Fd)X with
respect to the uniformity of uniform convergence. The sequence {fn}∞n=1 of
C(X)d has a uniformly convergent subsequence if {fn}∞n=1 is equicontinuous
and pointwise bounded (Arzelà-Ascoli).

Suppose that f is a bounded continuous mapping of

R = [t0, t0 + δ]×
{
x ∈ Rd : ‖x− x0‖ ≤ ε

}
into Rd such that

( sup
(t,x)∈R

‖f(t, x)‖)δ ≤ ε.

We define
‖f‖ = sup

(t,x)∈R
‖f(t, x)‖.

Suppose that t0 < t1 < · · · < tn = t0 + δ. We define

xk = xk−1 + f(tk−1, xk−1)(tk − tk−1)

for each k. Then the points (t0, x0), (t1, x1), . . . , (tn, xn) belong to R. We
define x to be the unique function whose graph is (t0, x0) · · · (tn, xn). Since

max
k

sup
(t,x)∈(tk−1,xk−1)(tk,xk)

‖(t, x)− (tk−1, xk−1)‖

≤ max
k

sup
(t,x)∈(tk−1,xk−1)(tk,xk)

√
1 + ‖f‖2(t− tk−1)

≤
√

1 + ‖f‖2 max
k

(tk − tk−1)
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and f is uniformly continuous on R, we have

lim
maxk(tk−tk−1)→0

max
k

sup
(t,x)∈(tk−1,xk−1)(tk,xk)

‖f(t, x)− f(tk−1, xk−1)‖ = 0. (1)

We define

r = max
k

sup
(t,x)∈(tk−1,xk−1)(tk,xk)

‖f(t, x)− f(tk−1, xk−1)‖

= max
k

sup
t∈[tk−1,tk]

∥∥f(t, x(t)
)
− dx(t)

dt

∥∥.
Then we have ∥∥∫ t

t0

f
(
t, x(t)

)
dt− x(t) + x0

∥∥ ≤ r(t− t0).

There exists a C1 mapping x of [t0, t0 + δ] into{
x ∈ Rd : ‖x− x0‖ ≤ ε

}
such that x(t0) = x0 and

dx

dt
= f(t, x)

on [t0, t0 + δ].

Proof. We define

t0 < · · · < tk = t0 +
kδ

n
< · · · < tn = t0 + δ.

Then we have
lim
n→∞

max
k

(tk − tk−1) = 0.

We define

rn = max
k

sup
(t,x)∈(tk−1,xk−1)(tk,xk)

‖f(t, x)− f(tk−1, xk−1)‖.

By the equation (1), we have limn→∞ rn = 0. We denote the unique function
whose graph is (t0, x0) · · · (tn, xn) by xn. Then we have∥∥∫ t

t0

f
(
t, xn(t)

)
dt− xn(t) + x0

∥∥ ≤ rn(t− t0).

The sequence {xn}∞n=1 is uniformly bounded and uniformly equicontinuous since

‖xn(τ1)− xn(τ2)‖ ≤ ‖f‖|τ1 − τ2|

for each τ1 and τ2. The sequence {xn}∞n=1 has a uniformly convergent sub-
sequence by the Arzelà-Ascoli theorem. We denote the subsequence again by
{xn}∞n=1. We define x = limn→∞ xn. We have

lim
n→∞

∫ t

t0

f
(
t, xn(t)

)
dt =

∫ t

t0

f
(
t, x(t)

)
dt
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by the bounded convergence theorem. We have

x(t) = x0 +

∫ t

t0

f
(
t, x(t)

)
dt

and

x(t0) = x0,
dx(t)

dt
= f

(
t, x(t)

)
.

Suppose that A is a nonempty subset of a metric space X. Then we have∣∣dist(x1, A)− dist(x2, A)
∣∣ ≤ dist(x1, x2)

for each (x1, x2) and the mapping x 7→ dist(x,A) is uniformly continuous.

Proof. Since we have

dist(x1, A)− dist(x2, a) ≤ dist(x1, a)− dist(x2, a) ≤ dist(x1, x2)

for each point a of A, we have

dist(x1, A)− dist(x2, A) = sup
a∈A

(
dist(x1, A)− dist(x2, a)

)
≤ dist(x1, x2).

Therefore, we have ∣∣dist(x1, A)− dist(x2, A)
∣∣ ≤ dist(x1, x2)

and the mapping x 7→ dist(x,A) is uniformly continuous.

Suppose that U is an open set of a metric space X. Suppose that C is a
compact subset of U . Then there exists δ > 0 such that

Cδ =
{
x ∈ X : dist(C, x) < δ

}
is a subset of U .

Proof. We may assume that C and X \ U are nonempty. Then we have

δ = dist(C,X \ U) = min
x∈C

dist(x,X \ U) > 0

and Cδ is a subset of U .

Suppose that f is a bounded continuous mapping of [0, 1]×Rd into Rd. Sup-
pose that x is a C1 function on a subinterval of [0, 1] containing a neighborhood
of 0 such that x(0) = 0 and

dx(t)

dt
= f

(
t, x(t)

)
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on domx. Then the solution x can be extended to the whole interval [0, 1] [1,
Section 5.2]. We define

S(0) =

{
x(0) : x(0) is a C1 function on [0, 1] such that

x(0)(0) = 0 and
dx(0)(t)

dt
= f

(
t, x(0)(t)

)
on [0, 1]

}
.

and Cx(0) to be the graph of x(0) for each element x(0) of S(0). Then the set

C =
⋃

x(0)∈S(0)

Cx(0)

is closed [1, Section 5.3].
Suppose that f is a bounded continuous mapping of R × Rd into Rd. We

define

S(t0,x0) =

{
x : x is a C1 function on [t0, 1] such that

x(t0) = x0 and
dx(t)

dt
= f

(
t, x(t)

)
on [t0, 1]

}
for each point (t0, x0) of (−∞, 1) × Rd. We assume that C is bounded (thus
compact) and let ε > 0. Then there exists δ > 0 such that [there exists an
element x(0) of S(0) such that

max
{

dist
(
Cx(0) ,

(
t, x(t)

))
: t0 ≤ t ≤ 1

}
< ε]

for each point (t0, x0) of (−∞, 1)×Rd and each element x of S(t0,x0) such that
dist

(
C, (t0, x0)

)
< δ.

Proof. Suppose contrary. We may assume that tn < 1 and xn is an element of
S(tn,xn(tn)) for each n and the following.

1. We have
1 > dist

(
C,
(
tn, xn(tn)

))
→ 0.

2. Suppose that x(0) is an element of S(0). Then we have

inf
n

max
{

dist
(
Cx(0) ,

(
t, xn(t)

))
: tn ≤ t ≤ 1

}
≥ ε.

We may assume that xn belongs to S(−1,xn(−1)) for each n. Then we have

xn(t) = xn(tn) +

∫ t

tn

f
(
t, xn(t)

)
dt
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on [−1, 1] for each n and the sequence (xn)∞n=1 is uniformly bounded on [−1, 1].
The sequence (xn)∞n=1 is uniformly equicontinuous on [−1, 1] since

∥∥xn(τ2)− xn(τ1)
∥∥ = ‖

∫ τ2

τ1

f
(
t, xn(t)

)
dt‖ ≤ ‖f‖|τ2 − τ1|.

We may assume that limn→∞ xn = x uniformly by the Arzelà-Ascoli theorem
and limn→∞ tn = t0. Then we have

x(t) = lim
n→∞

xn(t)

= lim
n→∞

(
xn(0) +

∫ t

0

f
(
t, xn(t)

)
dt

)
= x(0) +

∫ t

0

f
(
t, x(t)

)
dt

on [−1, 1] and x belongs to S(−1,x(−1)). The point
(
t0, x(t0)

)
belongs to C since

x(t0) = lim
n→∞

(
xn(tn)− x(tn) + x(tn)

)
= lim
n→∞

xn(tn)

and
dist

(
C,
(
t0, x(t0)

))
= lim
n→∞

dist
(
C,
(
tn, xn(tn)

))
= 0.

There exists an element x(0) of S(0) such that x(0) = x on [t0, 1]. Then we have

inf
n

max
{

dist
(
Cx(0) ,

(
t, xn(t)

))
: tn ≤ t ≤ 1

}
≥ ε.

This is a contradiction.

Suppose that f is a continuous mapping of a neighborhood U of the origin
(0, 0) of R× Rd into Rd and we assume the following.

1. Any C1 function x(0) on a subinterval domx(0) of [0, 1] containing a neigh-
borhood of 0 such that x(0)(0) = 0 and

dx(0)(t)

dt
= f

(
t, x(0)(t)

)
on domx(0) extends to an element of S(0).

2. The closure of the set
C =

⋃
x(0)∈S(0)

Cx(0)

is a compact subset of U .

Then the set C is closed and [there exists δ > 0 satisfying the following] for any
ε > 0.
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1. The set
Cδ =

{
(t, x) : dist

(
C, (t, x)

)
< δ

}
is contained in U .

2. Suppose that (t0, x0) is a point of Cδ ∩
(
(−∞, 1) × Rd

)
. Then any C1

function x on a subinterval domx of [t0, 1] containing a neighborhood of
t0 such that x(t0) = x0 and

dx(t)

dt
= f

(
t, x(t)

)
on domx extends to an element of S(t0,x0) and there exists an element
x(0) of S(0) such that

max
{

dist
(
Cx(0) ,

(
t, x(t)

))
: t0 ≤ t ≤ 1

}
< ε.

Proof. There exists a compact subset ∆ of U such that the closure of C is
contained in the interior of ∆. Then there exists a bounded continuous mapping
f̃ of R × Rd into Rd such that f̃ = f on ∆ by the Tietze extension theorem.
We define S̃(t0,x0) and C̃ related to f̃ in the same manner. Then the set S(0)

is contained in S̃(0) and C̃ is a closed set containing C. Suppose that x is an
element of S̃(0) and we assume that the compact set

(∂∆)−1 =
{
t :
(
t, x(t)

)
∈ ∂∆

}
is nonempty. We define t0 = min(∂∆)−1 > 0. Then the connected space [0, t0)
is a subset of

(Int ∆)−1 =
{
t :
(
t, x(t)

)
∈ Int ∆

}
.

The restriction of the function x to [0, t0] extends to an element of S(0). This is
a contradiction and the function x belongs to S(0). Then we have S(0) = S̃(0)

and the set C = C̃ is closed (thus compact).
We may assume that

Cε =
{

(t, x) : dist
(
C, (t, x)

)
< ε

}
is contained in the interior of ∆. There exists δ > 0 such that [there exists an
element x(0) of S(0) such that

max
{

dist
(
Cx(0) ,

(
t, x(t)

))
: t0 ≤ t ≤ 1

}
< ε]

for each point (t0, x0) of (−∞, 1)×Rd and each element x of S̃(t0,x0) such that
dist

(
C, (t0, x0)

)
< δ. We may assume that

Cδ =
{

(t, x) : dist
(
C, (t, x)

)
< δ

}
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is contained in the interior of ∆. Suppose that (t0, x0) is a point of Cδ ∩(
(−∞, 1) × Rd

)
. We take any C1 function x on a subinterval domx of [t0, 1]

containing a neighborhood of t0 such that x(t0) = x0 and

dx(t)

dt
= f

(
t, x(t)

)
on domx. Suppose that

(∂∆)−1 =
{
t :
(
t, x(t)

)
∈ ∂∆

}
is nonempty. We define t1 = min(∂∆)−1 > t0. Then the connected space [t0, t1)
is a subset of

(Int ∆)−1 =
{
t :
(
t, x(t)

)
∈ Int ∆

}
.

Then there exists an element x(0) of S(0) such that

max
{

dist
(
Cx(0) ,

(
t, x(t)

))
: t0 ≤ t ≤ t1

}
< ε.

The point
(
t1, x(t1)

)
belongs to the interior of ∆. This is a contradiction and

the function x extends to an element of S̃(t0,x0). There exists an element x(0)

of S(0) such that

max
{

dist
(
Cx(0) ,

(
t, x(t)

))
: t0 ≤ t ≤ 1

}
< ε.

This means that the function x belongs to S(t0,x0).

Suppose that f is a continuous mapping of a neighborhood U of the origin
(0, 0) of R× Rd into Rd and we assume the following.

1. Any C1 function x(0) on a subinterval domx(0) of [0, 1] containing a neigh-
borhood of 0 such that x(0)(0) = 0 and

dx(0)(t)

dt
= f

(
t, x(0)(t)

)
on domx(0) extends to an element of S(0).

2. The closure of the set
C =

⋃
x(0)∈S(0)

Cx(0)

is a compact subset of U .

Then the set C is closed. Suppose that U0 is a neighborhood of C. Then there
exists a neighborhood V0 of C satisfying [the following for each point (t0, x0) of
V0 ∩ (−∞, 1)× Rd].

1. Any solution for the Cauchy problem

x(t0) = x0,
dx(t)

dt
= f

(
t, x(t)

)
,

(
t, x(t)

)
∈ U

can be extended to [t0, 1].
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2. The graph of any such extension to [t0, 1] is contained in U0.

Suppose that f is a continuous mapping of an open set U of R × Rd into
Rd and we assume that [there exists δ > 0 such that there exists a unique C1

function x such that x(t0) = x0 and

dx(t)

dt
= f

(
t, x(t)

)
on (t0 − δ, t0 + δ)] for each point (t0, x0) of U .

Suppose that x(1) and x(2) are C1 functions on open intervals containing t0
such that x(i)(t0) = x0 and

dx(i)

dt
= f

(
t, x(i)

)
.

Then we have x(1) = x(2) on domx(1) ∩ domx(2). A partially ordered set
consisting of x that is a C1 mapping on an open interval containing t0 such that
x(t0) = x0 and

dx

dt
= f(t, x)

has a maximum x[t0, x0].
Suppose that x(0) is a C1 function on [t1, t2] such that

dx(0)

dt
= f

(
t, x(0)

)
.

Then there exists a neighborhood V of C(0) such that [domx[t0, x0] contains
[t1, t2] for each point (t0, x0) of V ].

The function x(t, t0, x0) = x[t0, x0](t) is continuous on the open set domx.

Proof. We define x(0) = x[0, 0]. Suppose that t1 ≥ 0 is a point of domx(0).
Then there exists δ0 > 0 such that [−δ0, t1 + δ0] is contained in domx(0). We
define

M = max

{
‖dx

(0)(t)

dt
‖ : −δ0 ≤ t ≤ t1 + δ0

}
<∞.

We denote the graph of x(0) on [−δ0, t1 +δ0] by C(0). Suppose that ε > 0. Then
there exists δ > 0 such that x = x[t0, x0] is defined on [−δ0, t1 + δ0] and

max
{

dist
(
C(0),

(
t, x(t, t0, x0)

))
: −δ0 ≤ t ≤ t1 + δ0

}
< ε

for each point (t0, x0) of C
(0)
δ . We may assume that δ ≤ δ0. Suppose that

‖(t0, x0)‖ < δ. Then we have

max
{

dist
(
C(0),

(
t, x(t, t0, x0)

))
: −δ0 ≤ t ≤ t1 + δ0

}
< ε.
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Suppose that |t− t1| < δ. Then we have

dist
(
C(0),

(
t, x(t, t0, x0)

))
< ε.

There exists a point t2 of [−δ0, t1 + δ0] such that∥∥(t2, x(0)(t2)
)
−
(
t, x(t, t0, x0)

)∥∥ < ε.

Then we have

‖x(t, t0, x0)− x(t1, 0, 0)‖ ≤ ‖x(t, t0, x0)− x(0)(t2)‖+ ‖x(0)(t2)− x(0)(t1)‖
< ε+M(ε+ δ)

≤ (2M + 1)ε.

Suppose that x(0) is a C1 function on [0, t1] and we define C(0) to be the
graph of x(0). Suppose that V is a neighborhood of C(0) and ϕ is a C1 function
on the open set

W =
{

(t, x, y) : (t, x), (t, y) ∈ V
}

such that the equation
ϕ(t, x, x) = 0

holds for each point (t, x) of V and the relation

ϕ(t, x, y) > 0

holds provided that x 6= y for each point (t, x, y) of W . Then there exists δ > 0
satisfying the following. Suppose that f is a continuous function on V such that

∂ϕ(t, x, y)

∂t
+
∂ϕ(t, x, y)

∂x
f(t, x) +

∂ϕ(t, x, y)

∂y
f(t, y) ≤ 0

holds for each point (t, x, y) of W and∫ t1

0

∥∥dx(0)(t)

dt
− f

(
t, x(0)(t)

)∥∥ dt < δ.

Suppose that (t0, x0) is a point of C
(0)
δ ∩ [0, t1) × Rd. Then there exists a C1

function x on [t0, t1] such that x(t0) = x0 and

dx(t)

dt
= f

(
t, x(t)

)
on [t0, t1].

Proof. There exists a compact subset ∆ of V such that the set C(0) is contained
in the interior of ∆. There exists δ > 0 such that the set

C
(0)
δ =

{
(t, x) : dist

(
C, (t, x)

)
< δ

}
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is contained in the interior of ∆. We define

t2 = min
{
t :
(
t, x(t)

)
∈ ∂∆

}
> t0.

We define

M = max
(t,x)∈∆∩[0,t1]×Rd

‖
∂ϕ
(
t, x(0)(t), x

)
∂x

‖ <∞.

Then we have

dϕ
(
t, x(0)(t), x(t)

)
dt

=
∂ϕ
(
t, x(0)(t), x(t)

)
∂t

+
∂ϕ
(
t, x(0)(t), x(t)

)
∂x

dx(0)(t)

dt
+
∂ϕ
(
t, x(0)(t), x(t)

)
∂y

dx(t)

dt

≤
∂ϕ
(
t, x(0)(t), x(t)

)
∂x

(
dx(0)(t)

dt
− f

(
t, x(0)(t)

))
≤M

∥∥dx(0)(t)

dt
− f

(
t, x(0)(t)

)∥∥
for t0 ≤ t ≤ t3 = min{t1, t2} and

ϕ
(
t3, x

(0)(t3), x(t3)
)
− ϕ

(
t0, x

(0)(t0), x0

)
≤M

∫ t3

t0

∥∥dx(0)(t)

dt
− f

(
t, x(0)(t)

)∥∥ dt
≤Mδ.

We define
η = min

(t,x)∈∂∆∩[0,t1]×Rd
ϕ
(
t, x(0)(t), x

)
> 0

and we may assume that

ϕ
(
t0, x

(0)(t0), x0

)
< η −Mδ

for each point (t0, x0) of C
(0)
δ ∩ [0, t1)× Rd.

η ≤ ϕ
(
t2, x

(0)(t2), x(t2)
)

≤ ϕ
(
t0, x

(0)(t0), x0

)
+Mδ

< η

provided that t2 ≤ t1. This is a contradiction and we have t2 > t1.

Suppose that f is a continuous mapping of an open set V of R×Rd into Rd.
Suppose that x is a C1 function on [0, 1] such that x(0) = 0 and

dx(t)

dt
= f

(
t, x(t)

)
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on [0, 1]. We denote the graph of x by C. Suppose that ϕ is a C1 function on
the open set

W =
{

(t, x, y) : (t, x), (t, y) ∈ V
}

such that the equation
ϕ(t, x, x) = 0

holds for each point (t, x) of V and the relation

ϕ(t, x, y) > 0

holds provided that x 6= y for each point (t, x, y) of W . Suppose that fi is a net
of continuous mappings of V into Rd such that

∂ϕ(t, x, y)

∂t
+
∂ϕ(t, x, y)

∂x
fi(t, x) +

∂ϕ(t, x, y)

∂y
fi(t, y) ≤ 0

holds for each point (t, x, y) of W for each i and we assume that

lim
i

∫ 1

0

∥∥f(t, x(t)
)
− fi

(
t, x(t)

)∥∥ dt = 0.

Then the solution for the Cauchy problem

xi(0) = 0,
dxi(t)

dt
= fi

(
t, xi(t)

)
is defined on [0, 1] eventually and xi converges to x uniformly on [0, 1].

Proof. Suppose that ε > 0. Then there exists δ > 0 such that∫ 1

0

∥∥f(t, x(t)
)
− fi

(
t, x(t)

)∥∥ dt < δ

implies that the solution for the Cauchy problem

xi(0) = 0,
dxi(t)

dt
= fi

(
t, xi(t)

)
is defined on [0, 1] and ‖xi − x‖ < ε.

Suppose that

x(0) = 0,
dx(t)

dt
= f(t)x(t) + g(t)

is a Cauchy problem of a linear differential equation. Suppose that fi and gi
are nets of continuous functions on [0, 1] such that limi fi = f and limi gi = g
uniformly on [0, 1]. Suppose that xi is a solution for the Cauchy problem

xi(0) = 0,
dxi(t)

dt
= fi(t)xi(t) + gi(t).

Then we have limi xi = x uniformly on [0, 1].
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Proof. Since

‖fi(t)x+ gi(t)− fi(t)y − gi(t)‖ ≤ ‖fi‖‖x− y‖,

the differential equations satisfy the Lipschitz condition. Since∫ 1

0

‖f(t)x(t) + g(t)− fi(t)x(t)− gi(t)‖ dt ≤ ‖f − fi‖‖x‖+ ‖g − gi‖ → 0,

limi xi = x uniformly.

Suppose that f is a C1 mapping of an open set U of R × Rd into Rd. We
define x = x[t0, x0]. Suppose that e is a unit vector and we define xδ(t) =
x(t, δe) = x(t, t0, x0 + δe). Then the function xδ is defined on each compact
subset of domx eventually and limδ→0 xδ = x compactly on domx. We define
δx = xδ − x. Then we have

dδx(t)

dt
= f

(
t, xδ(t)

)
− f

(
t, x(t)

)
=

(∫ 1

0

∂f
(
t, x(t) + θδx(t)

)
∂x

dθ

)
δx(t)

and we have

δx(t0)

δ
= e,

d

dt

δx(t)

δ
=

(∫ 1

0

∂f
(
t, x(t) + θδx(t)

)
∂x

dθ

)
δx(t)

δ
.

Since

lim
δ→0

∫ 1

0

∂f
(
t, x(t) + θδx(t)

)
∂x

dθ =
∂f
(
t, x(t)

)
∂x

compactly on domx, we have

lim
δ→0

δx(t)

δ
=
∂x(t, t0, x0)

∂e

compactly and we have

∂x(t0, t0, x0)

∂e
= e,

∂

∂t

∂x(t, t0, x0)

∂e
=
∂f
(
t, x(t, t0, x0)

)
∂x

∂x(t, t0, x0)

∂e
.

The function

(t, t0, x0) 7→ ∂x(t, t0, x0)

∂e

is continuous.

Proof. We have
lim

(t0,x0)→0
x[t0, x0] = x[0, 0]
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compactly on domx[0, 0]. We have

lim
(t0,x0)→0

∂f
(
t, x(t, t0, x0)

)
∂x

=
∂f
(
t, x(t, 0, 0)

)
∂x

compactly on domx[0, 0]. We have

lim
(t0,x0)→0

∂x(t, t0, x0)

∂e
=
∂x(t, 0, 0)

∂e

compactly on domx[0, 0].

The function (t, t0, x0) 7→ x(t, t0, x0) is of class C1 and

∂x(t0, t0, x0)

∂x0
= 1,

∂

∂t

∂x(t, t0, x0)

∂x0
=
∂f
(
t, x(t, t0, x0)

)
∂x

∂x(t, t0, x0)

∂x0
,

∂x(t, t0, x0)

∂t0
= −∂x(t, t0, x0)

∂x0
f(t0, x0),

∂x(t, t0, x0)

∂t
= f

(
t, x(t, t0, x0)

)
.

Suppose that f is a smooth mapping of an open U of R×Rd ×Rd′ into Rd.
We define x(t) = x(t, t0, x0, c) by

x(t0) = x0,
dx(t)

dt
= f

(
t, x(t), c

)
.

Then the function (t, t0, x0, c) 7→ x(t, t0, x0, c) is smooth and

∂x(t0, t0, x0, c)

∂x0
= 1,

∂

∂t

∂x(t, t0, x0, c)

∂x0
=
∂f
(
t, x(t, t0, x0, c), c

)
∂x

∂x(t, t0, x0, c)

∂x0
,

∂x(t, t0, x0, c)

∂t0
= −∂x(t, t0, x0, c)

∂x0
f(t0, x0, c),

∂x(t, t0, x0, c)

∂t
= f

(
t, x(t, t0, x0, c), c

)
,

∂x(t0, t0, x0, c)

∂c
= 0,

∂

∂t

∂x(t, t0, x0, c)

∂c
=
∂f
(
t, x(t, t0, x0, c), c

)
∂x

∂x(t, t0, x0, c)

∂c
+
∂f
(
t, x(t, t0, x0, c), c

)
∂c

.
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