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m Let (e,,)ﬂ:1 be a linear basis of a complex Lie algebra g.

Motivation
m The symmetric algebra Sg has a unique Poisson bracket
extending the Lie bracket

Poisson bracket Sg

Sg x Sg

I [

Lie bracket,
gxg -~ g
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Let C be the Poisson center of the Poisson algebra Sg.
Suppose that £ is an element of the dual space g* and let

Motivation

= 0
O¢ = Zf(en)a—en. The following is referred to as the
n=1

argume_nt shift method.

Theorem (A. Mishchenko and A. Fomenko, 1978)

The subset {5gx :(n,x) € N x f} is Poisson commutative.
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m We obtained the | Poisson commutative | subalgebra C¢

Motivation

generated by the elements ggx.

m The universal enveloping algebra Ug is considered as the
quantisation of the symmetric algebra Sg and we have

=5

m Vinberg asked if the Poisson commutative subalgebra fg

can be quantised to the subalgebra C¢ of

the universal enveloping algebra Ug with | gr (¢ = fg .
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NP Pt m Vinberg's problem is solved by
m Nazarov and Olshanski: (twisted) Yangians.
m Tarasov: symmetrisation mapping.

Motivation

m Vinberg's problem is also solved by the Feigin-Frenkel
center

m for regular elements ¢ (Feigin et al. and Rybnikov).
m for simple Lie algebras of types A and C (Futorny, Molev
and Molev, Yakimova).

The purpose of my talk is to quantise not only the algebra ?5
but also the operator O¢.
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ed o .. ed
: 1 .. d : :
Derivation Lie algebra gl satisfying the commutation relations
[ej,eé‘] = "ef — eééj‘.
We define

=1 =1

Oe; —=d =d
81X ce 8dX

for any element x of the symmetric algebra Sgl,.
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The derivation
Derivation Sgly — M(d, Sgly), X — Ox

is a unique linear mapping satisfying the following.
v = 0 for any scalar v.
Otr(&e) = ¢ for any numerical matrix .
(Leibniz rule)

A(xy) = (dx)y + x(dy)

for any elements x and y of the symmetric algebra Sgl,.
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Derivation — M(d7 Ug[d)7 X = aX

is a unique linear mapping satisfying the following.
dv = 0 for any scalar v.
otr(&e) = & for any numerical matrix &.
(quantum Leibniz rule)

d(xy) = (9x)y + x(9y) +| (9x)(9y)

for any elements x and y of the universal enveloping
algebra Ugl,,.
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B numerical matrix and let O¢ = tr(£0). The main theorem is the
following.

Derivation

Theorem (I. and Sharygin, 2023)

The subset
{3gx:(n,x)€N><C} (1)

is commutative.

Corollary

The subalgebra C¢ generated by the subset (1) is the quantum
argument shift algebra in the direction &.
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S e m We may assume that £ = diag(zi, ..., zy4) is diagonal and
(z1,...,24) is distinct considering the adjoint action of the
general linear Lie group GLg.

Derivation

m Vinberg and Rybnikov showed that the quantum argument
shift algebra in the direction £ is the centraliser of the set

i i Nd
i ele;
el L
Z -2

j#i i=1

m The proof is carried out by showing that these elements
commute with the quantum argument shift 8gx by
induction on the natural number n.
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C=Cltre,...,tre"]

and the center C of the universal enveloping algebra Ugl, is
the free commutative algebra on the elements

Formula

tre, s tred.

They are called the Gelfand invariants. We would like to
calculate the quantum argument shift 8£x for a central element
x. It is necessary and even sufficient to calculate the quantum

derivation 8(e”)J"-.
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Definition

We define fi(m)(x) _ ()" (x-1) |

2
Formula
Theorem (I, 2022)
We have the formula

n—1
nyi n—m—1 myi n—m—1 myi
o(enj =D (A" De)(emy + £ D(e)(em);)

m=0

for any nonnegative integer n.

The formula is used for the base case.
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We assume the following form

n—1
Formula a(en)J’ = Z <g,(nn_1)(6)j(em)l -+ h%’_l)(e)(em)})
m=0

where g,(n"_l) and hf,'f_l) are polynomials. We have

n+1)J Za( )

by the quantum Leibniz rule and the commutation relations.
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We obtain the recursion formulae
g (x) = gV x)x + A (x) for 0 < m < n.
2] g(")( )=1for 0 < n.
h[()")(x) =y og,(n" 1)(x)x’" for 0 < n.
h£r7)( )= h(" 1)( ) for 0 < m < n.
The solution to them turn out to be

Formula

g (x) = £ M(x), A (x) = £ (x).
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from now on. We write Cé(") for the subalgebra generated by

Formula the Subset Unm:0 85" C We haVe

Oe(tre™tre™...)

= Z tre™ Z tre™ .. -tr(§H f_(nk_mk_l)(e))
= = k
and the subalgebra Cg(l) is generated by the subset

Ccu {tr(ge”) }OO

n=0 '
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")il

elef o
POREIEUIE DR DEAC
J#i J#i k=1
d . . B .
Main Theorem — (_(en)-{ejl _|_ elj(en)-;) = O
=1

To make the inductive step work it is sufficient to show

i

[ad e}, 0¢] = Had Z z,-eji—ejzj , 84 , 85] =0.

It can be done by computation.
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Vs Tk direction £. We have

852(tre”1tre”2---): Z tre™ Z tre™ ...

n—mi—1n—my—1

R DI .tr<§ [Tr% e)otr(e]] f_(nz—me—ke—2)(e)))
¢ l

ki=—1 kp=—1

and the subalgebra C£(2) is generated by the subset

o0

CcCuU {tr(fematr(ﬁe”)) + tr(&”@tr(fe"’))}

m,n=0
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Rl \We define the m + n by n integer matrix P,(,m) by

) () = mi(,;(m))

i=1 J

Generators and Iet Pn _ P,(10)

Definition
We define

= z’": i)ﬁitr(fe"_lgej_l)

i=1 j=1

for any m by n integer matrix x.
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We define the n by n lower triangular integer matrix o(x) by

x} 0 - 0

Generators X]? —+ X% X22 RO 0
o(x) = _

T+ xt xB+x2 - X0

for any n by n integer matrix x.
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We have 1¢(0(x)) = 7¢(x) for any square integer matrix x.

Proof.
It is equivalent to the conditions tr({e™e") = tr(£e"¢e™). [

Generators

We have
tr(ge'"(‘?tr(fe”)> = Té(P,(,m)>,
ey o) (o2, )

modulo Cél).
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The following indicates the linear dependence of the generators.

Theorem (I, 2023)

We have
Generators o 0 P,Z;— _ i 2n — k + 2n — k —1 P(m+k)
Pm+2n 0 o o k k—1 m+k
0 Pr) = ~ (20— k (m+k) (m+k+1)
7 (Pm+2n+1 0 > - Z ( k > (Pm+k+1 + Pm+k )
k=0

for any nonnegative integers m and n.
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We obtained the conclusion.

Theorem (I, 2023)

The subalgebra C§(2) is generated by the subalgebra Cg(l) and
Generators the Subset

{Q(P'(’n))ﬂ'f (PIS:-)1> +T§(P,(1"+1)) in= 1,2,...}.
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The generators are tr(fe), tr(§e2), ...and

tr({2 )
tr(26%e® + Cete),

tr(¢%e® + gece?),

tr(2 2¢2e* 4 2¢eged + ce?ce® + €2 2)

tr(¢%e® + Cece® + £’ + £2€%),
(
(

Yasushi lkeda

Generators

tr(262e® + 2¢ece® + 26e¢ce* + ce3¢ed +4§2e4+§e§e)
tr(€2e” + cecel + ce?ce® + cedcet +3§2e5+§e§e)

They are mutually commutative.
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