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Prior Research and Motivation

Let (en)dn=1 be a linear basis of a complex Lie algebra g.

The symmetric algebra Sg has a unique Poisson bracket
extending the Lie bracket

Sg× Sg
Poisson bracket−−−−−−−−−→ Sgx x

g× g
Lie bracket−−−−−−→ g

.
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Let C be the Poisson center of the Poisson algebra Sg.
Suppose that ξ is an element of the dual space g∗ and let

∂ξ =
d∑

n=1

ξ(en)
∂

∂en
. The following is referred to as the

argument shift method.

Theorem (A. Mishchenko and A. Fomenko, 1978)

The subset
{
∂
n
ξx : (n, x) ∈ N× C

}
is Poisson commutative.
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Prior Research and Motivation

We obtained the Poisson commutative subalgebra C ξ
generated by the elements ∂

n
ξx .

The universal enveloping algebra Ug is considered as the
quantisation of the symmetric algebra Sg and we have
grUg = Sg .

Vinberg asked if the Poisson commutative subalgebra C ξ
can be quantised to the commutative subalgebra Cξ of

the universal enveloping algebra Ug with grCξ = C ξ .



Quantum
Argument
Shifts

Yasushi Ikeda

Motivation

Derivation

Formula

Main Theorem

Generators

Prior Research and Motivation

Vinberg’s problem is solved by

Nazarov and Olshanski: (twisted) Yangians.
Tarasov: symmetrisation mapping.

Vinberg’s problem is also solved by the Feigin-Frenkel
center

for regular elements ξ (Feigin et al. and Rybnikov).
for simple Lie algebras of types A and C (Futorny, Molev
and Molev, Yakimova).

Motivation

The purpose of my talk is to quantise not only the algebra C ξ
but also the operator ∂ξ.
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Quantum Derivation of Algebra Ugld

Let e =

e11 · · · e1d
...

. . .
...

ed1 · · · edd

 be a linear basis of the general linear

Lie algebra gld satisfying the commutation relations[
e ij , e

k
`

]
= δi`e

k
j − e i`δ

k
j .

We define

∂
i
j =

∂

∂e ji
, ∂x =


∂
1
1x · · · ∂

1
dx

...
. . .

...

∂
d
1x · · · ∂

d
dx


for any element x of the symmetric algebra Sgld .
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Remark

The derivation

Sgld → M(d ,Sgld), x 7→ ∂x

is a unique linear mapping satisfying the following.

1 ∂ν = 0 for any scalar ν.

2 ∂ tr(ξe) = ξ for any numerical matrix ξ.

3 (Leibniz rule)

∂(xy) = (∂x)y + x(∂y)

for any elements x and y of the symmetric algebra Sgld .
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Definition (Gurevich, Pyatov, and Saponov, 2012)

The quantum derivation

Ugld → M(d ,Ugld), x 7→ ∂x

is a unique linear mapping satisfying the following.

1 ∂ν = 0 for any scalar ν.

2 ∂ tr(ξe) = ξ for any numerical matrix ξ.

3 (quantum Leibniz rule)

∂(xy) = (∂x)y + x(∂y) + (∂x)(∂y)

for any elements x and y of the universal enveloping
algebra Ugld .
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Let C be the center of the algebra Ugld . Suppose that ξ is a
numerical matrix and let ∂ξ = tr(ξ∂). The main theorem is the
following.

Theorem (I. and Sharygin, 2023)

The subset {
∂nξ x : (n, x) ∈ N× C

}
(1)

is commutative.

Corollary

The subalgebra Cξ generated by the subset (1) is the quantum
argument shift algebra in the direction ξ.
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Quantum Derivation of Algebra Ugld

We may assume that ξ = diag(z1, . . . , zd) is diagonal and
(z1, . . . , zd) is distinct considering the adjoint action of the
general linear Lie group GLd .

Vinberg and Rybnikov showed that the quantum argument
shift algebra in the direction ξ is the centraliser of the set{

e ii ,
∑
j 6=i

e ji e
i
j

zi − zj

}d

i=1

.

The proof is carried out by showing that these elements
commute with the quantum argument shift ∂nξ x by
induction on the natural number n.
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Formula for Quantum Derivation

We have
C = C

[
tr e, . . . , tr ed

]
and the center C of the universal enveloping algebra Ugld is
the free commutative algebra on the elements

tr e, . . . , tr ed .

They are called the Gelfand invariants. We would like to
calculate the quantum argument shift ∂nξ x for a central element
x . It is necessary and even sufficient to calculate the quantum
derivation ∂(en)ij .
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I obtained the following formula for the quantum derivation.

Definition

We define f
(m)
± (x) =

(x + 1)m ± (x − 1)m

2
.

Theorem (I, 2022)

We have the formula

∂(en)ij =
n−1∑
m=0

(
f
(n−m−1)
+ (e)j(e

m)i + f
(n−m−1)
− (e)(em)ij

)
for any nonnegative integer n.

The formula is used for the base case.
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Proof.

We assume the following form

∂(en)ij =
n−1∑
m=0

(
g
(n−1)
m (e)j(e

m)i + h
(n−1)
m (e)(em)ij

)
,

where g
(n−1)
m and h

(n−1)
m are polynomials. We have

∂(en+1)ij =
d∑

k=1

∂
(

(en)ike
k
j

)
= · · ·

by the quantum Leibniz rule and the commutation relations.
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Proof.

We obtain the recursion formulae

1 g
(n)
m (x) = g

(n−1)
m (x)x + h

(n−1)
m (x) for 0 ≤ m < n.

2 g
(n)
n (x) = 1 for 0 ≤ n.

3 h
(n)
0 (x) =

∑n−1
m=0 g

(n−1)
m (x)xm for 0 ≤ n.

4 h
(n)
m (x) = h

(n−1)
m−1 (x) for 0 < m ≤ n.

The solution to them turn out to be

g
(n)
m (x) = f

(n−m)
+ (x), h

(n)
m (x) = f

(n−m)
− (x).
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We write ∂ for the algebraic homomorphism

Ugld → M(d ,Ugld), x 7→ diag(x , . . . , x) + ∂x

from now on. We write C
(n)
ξ for the subalgebra generated by

the subset
⋃n

m=0 ∂
m
ξ C . We have

∂ξ
(
tr en1 tr en2 · · ·

)
=

n1∑
m1=−1

tr em1

n2∑
m2=−1

tr em2 · · · tr
(
ξ
∏
k

f
(nk−mk−1)
− (e)

)
and the subalgebra C

(1)
ξ is generated by the subset

C ∪
{

tr
(
ξen
)}∞

n=0
.
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Proof of Main Theorem

We show the base case n = 1. We are reduced to show[∑
j 6=i

e ji e
i
j

zi − zj
, tr
(
ξen
)]

=
∑
j 6=i

1

zi − zj

d∑
k=1

zk
[
e ji e

i
j , (e

n)kk
]

=
d∑

j=1

(
−(en)ji e

i
j + e ji (e

n)ij
)

= 0.

To make the inductive step work it is sufficient to show

[
ad e ii , ∂ξ

]
=
[[

ad
∑
j 6=i

e ji e
i
j

zi − zj
, ∂ξ

]
, ∂ξ

]
= 0.

It can be done by computation.
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⋃∞
n=0 C

(n)
ξ is the quantum argument shift algebra in the

direction ξ. We have

∂2ξ
(
tr en1 tr en2 · · ·

)
=

n1∑
m1=−1

tr em1

n2∑
m2=−1

tr em2 · · ·

n1−m1−1∑
k1=−1

n2−m2−1∑
k2=−1

· · · tr
(
ξ
∏
`

f
(k`)
− (e)∂ tr

(
ξ
∏
`

f
(n`−m`−k`−2)
− (e)

))

and the subalgebra C
(2)
ξ is generated by the subset

C ∪
{

tr
(
ξem∂ tr

(
ξen
))

+ tr
(
ξen∂ tr

(
ξem

))}∞
m,n=0

.
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Definition

We define the m + n by n integer matrix P
(m)
n by

xmf
(n−j)
+ (x) =

m+n∑
i=1

(
P
(m)
n

)i
j
x i−1

and let Pn = P
(0)
n .

Definition

We define

τξ(x) =
m∑
i=1

n∑
j=1

x ij tr
(
ξe i−1ξe j−1

)
for any m by n integer matrix x .
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Definition

We define the n by n lower triangular integer matrix σ(x) by

σ(x) =


x11 0 · · · 0

x21 + x12 x22 · · · 0
...

...
. . .

...
xn1 + x1n xn2 + x2n · · · xnn


for any n by n integer matrix x .
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Proposition

We have τξ
(
σ(x)

)
= τξ(x) for any square integer matrix x.

Proof.

It is equivalent to the conditions tr
(
ξemξen

)
= tr

(
ξenξem

)
.

We have

tr
(
ξem∂ tr

(
ξen
))

= τξ

(
P
(m)
n

)
,

tr
(
ξem∂ tr

(
ξen
))

+ tr
(
ξen∂ tr

(
ξem

))
= τξ

(
σ

(
0 PT

n

Pm 0

))
modulo C

(1)
ξ .
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The following indicates the linear dependence of the generators.

Theorem (I, 2023)

We have

σ

(
0 PT

m

Pm+2n 0

)
=

n∑
k=0

((
2n − k

k

)
+

(
2n − k − 1

k − 1

))
P

(m+k)
m+k ,

σ

(
0 PT

m

Pm+2n+1 0

)
=

n∑
k=0

(
2n − k

k

)(
P

(m+k)
m+k+1 + P

(m+k+1)
m+k

)
.

for any nonnegative integers m and n.
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We obtained the conclusion.

Theorem (I, 2023)

The subalgebra C
(2)
ξ is generated by the subalgebra C

(1)
ξ and

the subset{
τξ

(
P
(n)
n

)
, τξ

(
P
(n)
n+1

)
+ τξ

(
P
(n+1)
n

)
: n = 1, 2, . . .

}
.
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Generators of Quantum Argument Shift Algebra

The generators are tr
(
ξe
)
, tr
(
ξe2
)
, . . . and

tr
(
ξ2e
)
,

tr
(
2ξ2e2 + ξeξe

)
,

tr
(
ξ2e3 + ξeξe2

)
,

tr
(
2ξ2e4 + 2ξeξe3 + ξe2ξe2 + ξ2e2

)
,

tr
(
ξ2e5 + ξeξe4 + ξe2ξe3 + ξ2e3

)
,

tr
(
2ξ2e6 + 2ξeξe5 + 2ξe2ξe4 + ξe3ξe3 + 4ξ2e4 + ξeξe3

)
,

tr
(
ξ2e7 + ξeξe6 + ξe2ξe5 + ξe3ξe4 + 3ξ2e5 + ξeξe4

)
, . . . .

They are mutually commutative.
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